Abstract

We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS2 filled LCOF pumped with sub-nanosecond pulses at 532nm and 1064nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. E. P. Ippen, “Low-power quasi-CW Raman oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
    [CrossRef]
  4. J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26(4), 163–165 (1975).
    [CrossRef]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  6. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  7. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  8. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, J. Herrmann, and Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 62306240 (2010).
  9. M. C. P. Huy, A. Baron, S. Lebrun, R. Frey, and P. Delaye, “Characterization of self-phase modulation in liquid filled hollow core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 1886–1893 (2010).
  10. A. R. Chraplyvy and T. J. Bridges, “Infrared generation by means of multiple-order stimulated Raman scattering in CCl4- and CBrCl3-filled hollow silica fibers,” Opt. Lett. 6(12), 632–633 (1981).
    [CrossRef] [PubMed]
  11. T. J. Bridges, A. R. Chraplyvy, J. G. Bergman, and R. M. Hart, “Broadband infrared generation in liquid-bromine-core optical fibers,” Opt. Lett. 7(11), 566–568 (1982).
    [CrossRef] [PubMed]
  12. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995).
    [CrossRef] [PubMed]
  13. P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
    [CrossRef]
  14. T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TrAC-Trend, Anal. Chem. 23, 385–392 (2004).
  15. S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
    [CrossRef]
  16. A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett. 24(8), 557–559 (1999).
    [CrossRef] [PubMed]
  17. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  18. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  19. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
    [CrossRef] [PubMed]
  20. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  21. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  22. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  24. M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
    [CrossRef]
  25. N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16(3), 81–84 (1966).
    [CrossRef]
  26. A. Bertoni, “Analysis of the efficiency of a third order cascaded Raman operating at the wavelength of 1.24 μm,” Opt. Quantum Electron. 29(11), 1047–1058 (1997).
    [CrossRef]
  27. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [CrossRef] [PubMed]
  28. A. D. Yablon, Optical Fiber Fusion Splicing (Heidelberg, Germany: Springer-Verlag press, 2005).
  29. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
    [CrossRef] [PubMed]
  30. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
    [CrossRef] [PubMed]

2011

2010

2008

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

2007

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

2004

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TrAC-Trend, Anal. Chem. 23, 385–392 (2004).

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2003

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

1999

1998

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[CrossRef]

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

1997

A. Bertoni, “Analysis of the efficiency of a third order cascaded Raman operating at the wavelength of 1.24 μm,” Opt. Quantum Electron. 29(11), 1047–1058 (1997).
[CrossRef]

1995

1982

1981

1975

J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26(4), 163–165 (1975).
[CrossRef]

1970

E. P. Ippen, “Low-power quasi-CW Raman oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
[CrossRef]

1969

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
[CrossRef]

1966

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16(3), 81–84 (1966).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Barlow, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Baron, A.

Benabid, F.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Bergman, J. G.

Bertoni, A.

A. Bertoni, “Analysis of the efficiency of a third order cascaded Raman operating at the wavelength of 1.24 μm,” Opt. Quantum Electron. 29(11), 1047–1058 (1997).
[CrossRef]

Bethge, J.

Bhawalkar, J. D.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bjarklev, A.

Bloembergen, N.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16(3), 81–84 (1966).
[CrossRef]

Brédas, J. L.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Bridges, T. J.

Broeng, J.

Caldwell, S.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Chraplyvy, A. R.

Cohen, O.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Colles, M. J.

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
[CrossRef]

Corwin, K. L.

Couny, F.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Dallas, T.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TrAC-Trend, Anal. Chem. 23, 385–392 (2004).

Dasgupta, P. K.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TrAC-Trend, Anal. Chem. 23, 385–392 (2004).

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Delaye, P.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Dong, S.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Fang, A.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Fiedler, T.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Frey, R.

Genfa, Z.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Griebner, U.

Hak, D.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Hales, J. M.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Harris, S. E.

A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett. 24(8), 557–559 (1999).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[CrossRef]

Hart, R. M.

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

He, G. S.

Hermann, D. S.

Herrmann, J.

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Husakou, A.

Huy, M. C. P.

Ippen, E. P.

E. P. Ippen, “Low-power quasi-CW Raman oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
[CrossRef]

Jones, A. M.

Jones, R.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Kadel, R.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Lallemand, P.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16(3), 81–84 (1966).
[CrossRef]

Larsen, T. T.

Lebrun, S.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Liu, A. S.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Liu, S. Y.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Marder, S. R.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Matichak, J.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Min, B.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mitschke, F.

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nampoothiri, A. V. V.

Nicolaescu, R.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Noack, F.

Ohira, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Paniccia, M.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Park, C. K.

Perry, J. W.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Poruthoor, S. K.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Prasad, P. N.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ratanavis, A.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Rong, H. S.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Rudolph, W.

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Sokolov, A. V.

A. V. Sokolov, D. D. Yavuz, and S. E. Harris, “Subfemtosecond pulse generation by rotational molecular modulation,” Opt. Lett. 24(8), 557–559 (1999).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[CrossRef]

Steinmeyer, G.

Stone, J.

J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26(4), 163–165 (1975).
[CrossRef]

T,

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

Washburn, B. R.

Wheeler, N. V.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yavuz, D. D.

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Yesudas, K.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Zhao, C. F.

Anal. Chem.

P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S. Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70(22), 4661–4669 (1998).
[CrossRef]

Appl. Phys. Lett.

E. P. Ippen, “Low-power quasi-CW Raman oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
[CrossRef]

J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26(4), 163–165 (1975).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Opt. Commun.

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. Bertoni, “Analysis of the efficiency of a third order cascaded Raman operating at the wavelength of 1.24 μm,” Opt. Quantum Electron. 29(11), 1047–1058 (1997).
[CrossRef]

Phys. Rev. Lett.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16(3), 81–84 (1966).
[CrossRef]

S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[CrossRef]

Science

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

TrAC-Trend, Anal. Chem.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TrAC-Trend, Anal. Chem. 23, 385–392 (2004).

Other

A. D. Yablon, Optical Fiber Fusion Splicing (Heidelberg, Germany: Springer-Verlag press, 2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Integrated LCOF preparation and stimulated Raman generation setup. a, Gap-splice between Corning SMF28 (left) and a 10μm core LCOF (right). b, Gap-splice between two segments of Corning SMF28. c, Liquid access port assembly. d, Photograph of an integrated 1m long LCOF filled with CS2. e, Schematic of an integrated LCOF filled with CS2. f, Schematic diagram of the experimental setup. PBS: polarizing beam splitter; MO: microscope objective; PD: photodiode; OSA: optical spectrum analyzer

Fig. 2
Fig. 2

Experimental and simulation results for 532nm pumping. Measured a) and calculated b) evolution of the output spectrum as the pump pulse energy is increased, for a pump wavelength of 532 nm. The numbers labeling the Stokes lines are the corresponding center wavelength in nanometers. Inset of a): Photograph of the Raman lines separated in space using a prism.

Fig. 3
Fig. 3

Experimental and simulation results for 1064nm pumping. Measured a) and calculated b) evolution of the output spectrum as the pump pulse energy is increased for 1064nm pumping. Five orders of stimulated Raman scattering are generated at ~21nJ coupled pump pulse energy. The numbers labeling the Stokes lines are the corresponding center wavelength in nanometers.

Fig. 4
Fig. 4

Pulse energy threshold for generation of different Raman orders. The measured a) and calculated b) pulse energies corresponding to generation of different orders of Raman generation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P t h r = 16 A e f f g R L e f f
A p z = g p 2 | A s , 1 | 2 A p
A s , l z = g s , l 2 | A s , l 1 | 2 A s , l g s , l 2 | A s , l + 1 | 2 A s , l ,         l = 1 , , M 1   ( A s , 0 A p )
A s , M z = g s , M 2 | A s , M 1 | 2 A s , M

Metrics