Abstract

We directly demonstrate an improvement in the radiative decay rate of dye molecules near multilayer hyperbolic metamaterials (HMMs). Our comprehensive study shows a radiative decay rate for rhodamine 800 (Rh800) that is several times higher due to the use of HMM samples as compared to dielectric substrates. This is also the first experimental demonstration that multilayer hyperbolic metamaterials provide an increase in the radiative decay rate relative to those from either thin or thick gold films.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
    [CrossRef]
  2. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [CrossRef]
  3. G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74(9), 1184–1188 (1948).
    [CrossRef]
  4. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
    [CrossRef]
  5. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  6. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4(3), 337–350 (1987).
    [CrossRef]
  7. L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
    [CrossRef]
  8. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
    [CrossRef]
  9. S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
    [CrossRef]
  10. H. Yoon, S. A. Maier, D. D. C. Bradley, and P. N. Stavrinou, “Surface plasmon coupled emission using conjugated light-emitting polymer films,” Opt. Mater. Express 1(6), 1127–1138 (2011).
    [CrossRef]
  11. R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
    [CrossRef]
  12. J. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
    [CrossRef]
  13. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).
  14. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
    [CrossRef] [PubMed]
  15. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
    [CrossRef] [PubMed]
  16. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).
  17. Z. Jacob, “Classical and quantum optics of hyperbolic metamaterials,” in Dissertation Purdue University, West Lafayette (2010).
  18. Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
    [CrossRef]
  19. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).
  20. X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
    [CrossRef]
  21. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
    [CrossRef]
  22. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
    [CrossRef] [PubMed]
  23. M. D. Escarra, S. Thongrattanasiri, A. J. Hoffman, J. Chen, W. O. Charles, K. Conover, V. A. Podolskiy, and C. F. Gmachl, “Broadband, Low-Dispersion, Mid-Infrared Metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QWB4.
  24. K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
    [CrossRef]
  25. A. Penzkofer and Y. Lu, “Fluorescence quenching of Rhodamine 6G in methanol at high concentration,” Chem. Phys. 103(2-3), 399–405 (1986).
    [CrossRef]
  26. F. Ammer, A. Penzkofer, and P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995).
    [CrossRef]
  27. R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light (North Holland, 1987).
  28. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  29. B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [CrossRef]
  30. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett. 36(13), 2530–2532 (2011).
    [CrossRef] [PubMed]
  31. A. P. Vinogradov, A. I. Ignatov, A. M. Merzlikin, S. A. Tretyakov, and C. R. Simovski, “Additional effective medium parameters for composite materials (excess surface currents),” Opt. Express 19(7), 6699–6704 (2011).
    [CrossRef] [PubMed]
  32. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
    [CrossRef] [PubMed]
  33. M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
    [CrossRef]
  34. Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
    [CrossRef]
  35. A. T. R. Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983).
    [CrossRef]
  36. D. P. Benfey, D. C. Brown, S. J. Davis, L. G. Piper, and R. F. Foutter, “Diode-pumped dye laser analysis and design,” Appl. Opt. 31(33), 7034–7041 (1992).
    [CrossRef] [PubMed]
  37. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Metamaterial based broadband engineering of quantum dot spontaneous emission,” arXiv:0912.2454v1 [physics.optics] (2009).
  38. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  39. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011).
    [CrossRef]

2011 (5)

2010 (2)

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[CrossRef] [PubMed]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

2009 (1)

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).

2008 (5)

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[CrossRef]

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
[CrossRef]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

J. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[CrossRef]

2007 (1)

2006 (4)

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
[CrossRef]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[CrossRef]

2005 (2)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

2004 (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[CrossRef] [PubMed]

1998 (1)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

1995 (1)

F. Ammer, A. Penzkofer, and P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995).
[CrossRef]

1992 (1)

1987 (1)

1986 (2)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

A. Penzkofer and Y. Lu, “Fluorescence quenching of Rhodamine 6G in methanol at high concentration,” Chem. Phys. 103(2-3), 399–405 (1986).
[CrossRef]

1984 (1)

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1983 (1)

A. T. R. Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983).
[CrossRef]

1977 (1)

K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

1970 (1)

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

1948 (1)

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74(9), 1184–1188 (1948).
[CrossRef]

Adegoke, J.

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Ammer, F.

F. Ammer, A. Penzkofer, and P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995).
[CrossRef]

Aslan, K.

Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
[CrossRef]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Axelrod, D.

Bahoura, M.

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Barnakov, Y.

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Barnakov, Y. A.

Barnes, W.

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Barnes, W. L.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[CrossRef]

Belov, P. A.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011).
[CrossRef]

Benfey, D. P.

Boltasseva, A.

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Bonner, C. E.

Bradley, D. D. C.

Brown, D. C.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Chen, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Davis, S. J.

Davison, C.

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Drachev, V. P.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Drexhage, K.

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[CrossRef]

Dryden, D.

Falnes, J.

K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Ford, G.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Foutter, R. F.

Fujii, M.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
[CrossRef]

Geddes, C. D.

Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
[CrossRef]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Gryczynski, I.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Hayashi, S.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
[CrossRef]

Hellen, E. H.

Hong, Z.

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

Ignatov, A. I.

Irudayaraj, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Jacob, Z.

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[CrossRef] [PubMed]

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[CrossRef]

Ketterson, J.

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

Khurgin, J.

J. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[CrossRef]

Khurgin, J. B.

Kidwai, O.

Kildishev, A.

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Kildishev, A. V.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Kim, J.

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Kivshar, Y. S.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011).
[CrossRef]

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).

Lakowicz, J. R.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[CrossRef] [PubMed]

Leonenko, Z.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

Li, H.

Liu, Z.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Lu, Y.

A. Penzkofer and Y. Lu, “Fluorescence quenching of Rhodamine 6G in methanol at high concentration,” Chem. Phys. 103(2-3), 399–405 (1986).
[CrossRef]

Luan, L.

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

Maekawa, A.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
[CrossRef]

Maier, S. A.

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Malyn, S. N.

Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
[CrossRef]

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Mayy, M.

Merzlikin, A. M.

Miller, J. N.

A. T. R. Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983).
[CrossRef]

Mu, W.

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

Naik, G.

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Narimanov, E.

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Narimanov, E. E.

Nataraj, G.

Ni, X.

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Noginov, M.

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Noginov, M. A.

Nyga, P.

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Pake, G.

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74(9), 1184–1188 (1948).
[CrossRef]

Pedersen, R. H.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Pendry, J.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Penzkofer, A.

F. Ammer, A. Penzkofer, and P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995).
[CrossRef]

A. Penzkofer and Y. Lu, “Fluorescence quenching of Rhodamine 6G in methanol at high concentration,” Chem. Phys. 103(2-3), 399–405 (1986).
[CrossRef]

Piper, L. G.

Poddubny, A. N.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011).
[CrossRef]

Purcell, E.

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74(9), 1184–1188 (1948).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Selanger, K.

K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Shadrivov, I. V.

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).

Shalaev, V.

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Sievert, P.

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

Sikkeland, T.

K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Simovski, C. R.

Sipe, J. E.

Small, C.

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Soref, R.

J. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[CrossRef]

Soref, R. A.

Stavrinou, P. N.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sun, G.

J. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tretyakov, S. A.

Tsai, D.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Vinogradov, A. P.

Vukovic, S. M.

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).

Weber, W.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Weidner, P.

F. Ammer, A. Penzkofer, and P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995).
[CrossRef]

Williams, A. T. R.

A. T. R. Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983).
[CrossRef]

Winfield, S. A.

A. T. R. Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983).
[CrossRef]

Winter, G.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[CrossRef]

Wood, B.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Yamada, Y.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
[CrossRef]

Yoon, H.

Yuan, H. K.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
[CrossRef]

Zhu, G.

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[CrossRef] [PubMed]

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

Zhukovsky, S. V.

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

A. T. R. Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst (Lond.) 108(1290), 1067–1071 (1983).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

X. Ni, G. Naik, A. Kildishev, Y. Barnakov, A. Boltasseva, and V. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

J. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[CrossRef]

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[CrossRef]

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Appl. Phys. Lett. 95, 041902 (2009).

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[CrossRef]

Chem. Phys. (2)

A. Penzkofer and Y. Lu, “Fluorescence quenching of Rhodamine 6G in methanol at high concentration,” Chem. Phys. 103(2-3), 399–405 (1986).
[CrossRef]

F. Ammer, A. Penzkofer, and P. Weidner, “Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths,” Chem. Phys. 192(3), 325–331 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Zhang, K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced phosphorescence (MEP),” Chem. Phys. Lett. 427(4-6), 432–437 (2006).
[CrossRef]

Curr. Opin. Biotechnol. (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

J. Fluoresc. (1)

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

J. Lumin. (1)

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[CrossRef]

J. Mod. Opt. (1)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys. 47(2), 1152–1157 (2008).
[CrossRef]

New J. Phys. (2)

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[CrossRef]

L. Luan, P. Sievert, W. Mu, Z. Hong, and J. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys. 10(7), 073012 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rep. (1)

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. (1)

G. Pake and E. Purcell, “Line shapes in nuclear paramagnetism,” Phys. Rev. 74(9), 1184–1188 (1948).
[CrossRef]

Phys. Rev. A (1)

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011).
[CrossRef]

Phys. Rev. B (2)

M. Noginov, G. Zhu, M. Bahoura, C. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[CrossRef]

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (6)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light (North Holland, 1987).

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Metamaterial based broadband engineering of quantum dot spontaneous emission,” arXiv:0912.2454v1 [physics.optics] (2009).

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009).

Z. Jacob, “Classical and quantum optics of hyperbolic metamaterials,” in Dissertation Purdue University, West Lafayette (2010).

M. D. Escarra, S. Thongrattanasiri, A. J. Hoffman, J. Chen, W. O. Charles, K. Conover, V. A. Podolskiy, and C. F. Gmachl, “Broadband, Low-Dispersion, Mid-Infrared Metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QWB4.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) The planar, stacked HMM structure with 19-nm alumina and 19-nm gold layers. The total thickness is 302 nm. (b) Illustration of the dye thin film with HMM layers, a thick gold layer (300 nm), and a thin gold layer (20 nm). Another reference sample was also prepared with only a dye thin film on a glass substrate.

Fig. 2
Fig. 2

Measured (exp) and calculated (model) reflection spectra for three different thin-film samples: (a) Thin Au films with 21-nm and 89-nm spacers. (b) 300 nm Au films with 21-nm and 89-nm spacers. (c) Multilayer (HMM) films with 21-nm and 89-nm spacers.

Fig. 3
Fig. 3

Sample schematic for absorption measurements. Two identical samples were prepared with dye (left) and without dye (right) in the epoxy thin film layer for each type of sample (HMM, thick and thin gold, and bare glass samples).

Fig. 4
Fig. 4

Absorption (%) spectra of dye molecules in an epoxy layer for the samples under study.

Fig. 5
Fig. 5

Fluorescence spectra for the samples for both the 89-nm and 21-nm spacer layers.

Fig. 6
Fig. 6

Dissipated power spectra for the multilayer and thin Au film samples.

Fig. 7
Fig. 7

Effective permittivities, z-component (left) and x-component (right) for the thin-Au sample with a 21-nm spacer, blue- real part, red - imaginary part.

Fig. 9
Fig. 9

Effective permittivities, z-component (left) and x-component (right) for 300-nm Au film sample with 21-nm spacer, blue- real part, red - imaginary part.

Fig. 10
Fig. 10

Thin Au film with a 21-nm spacer: comparison of fitting results for an effective layer and experimental results.

Fig. 12
Fig. 12

Sample with a 300-nm Au film and a 21-nm spacer: comparison of fitting results for a 55-nm effective layer at the model interface and experimental results.

Fig. 8
Fig. 8

Effective permittivities, z-component (left) and x-component (right) for a multilayer sample with a 21-nm spacer, blue- real part, red - imaginary part, λres = 473 nm.

Fig. 11
Fig. 11

Multilayer sample with 21-nm spacer: comparison of fitting results for a 275-nm effective layer at the model interface and experimental layers (19 nm Au + 19 nm alumina) x 8 + 42 nm epoxy.

Tables (6)

Tables Icon

Table 1 Quantum Yield Versus Concentration of Rh800 in Epoxy Films

Tables Icon

Table 2 Effective permittivities for interface-containing layers. HMM-21: a 275-nm thickness (model 20), HMM-89: a 240-nm thickness (model 24), Thin Au-21: a 34-nm thickness (model 23), and 300 nm Au-21: a 53-nm thickness (model 21). The model details are described in the Appendix.

Tables Icon

Table 3 Reflection, Transmission and Absorption Data in % for Selected Samples under P-polarized Light at 633 nm and 720/715 nm and Various Incidence Angles

Tables Icon

Table 4 Absorption at 633 nm and Total Lifetime Results for Different Substrates and for Both Spacer Layers

Tables Icon

Table 5 Experimental Values Normalized by Those of the Glass Substrate, and the Apparent Radiative Decay Rates

Tables Icon

Table 6 Radiative and Non-radiative Decay Rates, the Ratio Between Them, and the Quantum Yields for the Reference Sample (Glass Substrate), the HMM Sample, and the Thick and Thin Gold Samples

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ε e f f = ε ¯ ( 1 i k a b 4 d μ 1 ε 2 μ 2 ε 1 ε ¯ μ ¯ ) ,
μ e f f = μ ¯ ( 1 + i k a b 4 d μ 1 ε 2 μ 2 ε 1 ε ¯ μ ¯ ) ,
ε ¯ = ( b ε 2 + a ε 1 a + b ) ; μ ¯ = ( b μ 2 + a μ 1 a + b ) .
ε e f f = ε ˜ ; ε ˜ 1 = a ε 1 + b ε 2 a + b .
Q s = Q r e f A r e f A s I s I r e f ( n s n r e f ) 2 ,
Q = Γ r τ ; τ = [ Γ r + κ n r ] 1 = Γ 1 .
( Γ r ) s ( Γ r ) r e f = τ r e f τ s A r e f A s I s I r e f ( n s n r e f ) 2 ,
P a b s = ω 2 Im { α } | n μ E | 2 = ω 6 Im { α } | E | 2 ,
P a b s ( h u p ) P a b s ( h d ) = | E ( h u p ) | 2 | E ( h d ) | 2 = 1 + | r | 2 + 2 | r | cos ( β + 2 k 1 h u p ) 1 + | r | 2 + 2 | r | cos ( β + 2 k 1 h d ) .
r = | r | exp ( i β ) = n 1 n 2 i κ 2 n 1 + n 2 + i κ 2 ,
tan ( π + β ) = 2 κ 2 n 1 n 2 2 + κ 2 2 n 1 2 .
P = d W d t = ω 2 Im { μ E ( r 0 ) } ,
P P 0 = 1 + 6 π ε 0 ε | μ | 2 1 k 3 Im { μ * E r ( r 0 ) } , P 0 = | μ | 2 12 π ω ε 0 ε k 3 .
Δ P p r o p ( u p r o p ) / P 0 = ( 3 / 2 ) Q k 1 3 Re ( I p r o p )
I p r o p = e 2 i t p r o p d | μ | 2 [ μ 2 ( k 1 2 t p r o p 2 ) r p ( u p r o p ) + 0.5 μ 2 k 1 2 r s ( u p r o p ) 0.5 μ 2 t p r o p 2 r p ( u p r o p ) ]
Δ P e v ( u e v ) / P 0 = ( 3 / 2 ) Q k 1 3 Re ( I e v )
I p r o p = e 2 i t p r o p d | μ | 2 [ μ 2 ( k 1 2 t p r o p 2 ) r p ( u p r o p ) + 0.5 μ 2 k 1 2 r s ( u p r o p ) 0.5 μ 2 t p r o p 2 r p ( u p r o p ) ]
I e v = e 2 t e v d i | μ | 2 [ μ 2 ( k 1 2 + t e v 2 ) r p ( u e v ) + 0.5 μ 2 k 1 2 r s ( u e v ) + 0.5 μ 2 t e v 2 r p ( u e v ) ] ,

Metrics