Abstract

We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Ben Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17(2), 406–418 (2011).
    [CrossRef]
  2. Cisco systems white paper, “Cisco visual networking index: Forecast and methodology, 2010-2015” (Cisco systems, 2011). http://www.cisco.com/en/US/hmpgs/index.html .
  3. A report of the TeleGeography Research, “Global internet geography” (PriMetrica, Inc., 2010). http://www.telegeography.com/research-services/global-internet-geography/index.html .
  4. T. Asami and S. Namiki, “Energy consumption targets for network systems,” in Proc. ECOC2008, Brussels, Belgium, paper Tu.4.A.3.
  5. Working Groups of the Intergovernmental Panel on Climate Change (IPCC), Climate change 2007: Synthesis report (IPCC, 2007).
  6. C. Lange, D. Kosiankowski, C. Gerlach, F.-J. Westphal, and A. Gladisch, “Energy consumption of telecommunication networks,” in Proc. ECOC2009, Vienna, Austria, Paper 5.5.3.
  7. X. Dong, T. El-Gorashi, J.-M. Elmirghani, “Green IP over WDM networks with data centers,” J. Lightwave Technol. 29(12), 1861–1880 (2011).
    [CrossRef]
  8. D. Kilper, “Energy efficient networks,” in Proc. OFC2011, paper OWI5.
  9. R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
    [CrossRef]
  10. R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2011).
    [CrossRef]
  11. The Climate Group, SMART 2020: Enabling the low carbon economy in the information age (Global eSustainablity Initiative, 2008).
  12. C. Lange and A. Gladisch, “On the energy consumption of FTTH access networks,” in Proc. OFC2009, San Diego, CA, paper JThA79.
  13. K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).
  14. P. Chowdhury, M. Tornatore, S. Sarkar, B. Mukherjee, “Building a green wireless-optical broad band access netwok (WOBAN),” J. Lightwave Technol. 28(16), 2219–2229 (2010).
    [CrossRef]
  15. C. Lange, D. Kosiankowski, and A. Gladisch, “Power and energy consumption in broadband fixed access network migration,” in Proc. ECOC 2011, paper We.8.C.2.
  16. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  17. M.-F. Huang, J. Yu, D. Qian, N. Cvijetic, and G.-K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC2009, San Diego, CA, paper OMV5.
  18. D. Qian, T. Kwok, N. Cviject, J. Hu, and T. Wang, “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission,” in Proc. OFC2010, paper PDPD9.
  19. L. Shi, S.-S. Lee, and B. Mukherjee, “An SLA-based energy-efficient scheduling scheme for EPON with sleep-mode ONU,” in Proc. OFC2011, paper OThB4.
  20. R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
    [CrossRef]
  21. J. Zhang, T. Wang, and N. Ansari, “Designing energy-efficient optical line terminal for TDM passive optical networks,” in Proc. Sarnoff2011, pp. 1–5.
  22. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw. 4(11), 737–758 (2005).
    [CrossRef]
  23. B. Schmidt, A. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [CrossRef]
  24. Sandvine, “Global Internet Phenomena Spotlight – North America, Fixed Access, Spring 2011” (Sandvine, 2011). http://www.sandvine.com/news/global_broadband_trends.asp .

2011

R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2011).
[CrossRef]

S. J. Ben Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17(2), 406–418 (2011).
[CrossRef]

X. Dong, T. El-Gorashi, J.-M. Elmirghani, “Green IP over WDM networks with data centers,” J. Lightwave Technol. 29(12), 1861–1880 (2011).
[CrossRef]

2010

2008

2005

2004

K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).

Armstrong, J.

Banerjee, A.

Ben Yoo, S. J.

S. J. Ben Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17(2), 406–418 (2011).
[CrossRef]

Chowdhury, P.

Christensen, K. J.

K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).

Clarke, F.

Dong, X.

El-Gorashi, T.

Elmirghani, J.-M.

Fujimoto, Y.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

George, A. D.

K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).

Gunaratne, C.

K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).

Hadama, H.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

Kani, J.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

Kim, K.

Kramer, G.

Kubo, R.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

Liu, B.

Lowery, A.

Mukherjee, B.

Nordman, B.

K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).

Park, Y.

Sakamoto, T.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

Sarkar, S.

Schmidt, B.

Song, H.

Tornatore, M.

Tucker, R. S.

R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2011).
[CrossRef]

Ujikawa, H.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

Xin, X.

Yang, S.

Yoshimoto, N.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

Yu, C.

Yu, J.

Zhang, L.

Zhang, Q.

Comput. Commun.

K. J. Christensen, C. Gunaratne, B. Nordman, A. D. George, “The next frontier for communications networks: Power management,” Comput. Commun. 27(18), 1758–1770 (2004).

IEEE J. Opt. Commun. Netw.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw. 2(9), 716–729 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. J. Ben Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron. 17(2), 406–418 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

Opt. Express

Other

The Climate Group, SMART 2020: Enabling the low carbon economy in the information age (Global eSustainablity Initiative, 2008).

C. Lange and A. Gladisch, “On the energy consumption of FTTH access networks,” in Proc. OFC2009, San Diego, CA, paper JThA79.

Cisco systems white paper, “Cisco visual networking index: Forecast and methodology, 2010-2015” (Cisco systems, 2011). http://www.cisco.com/en/US/hmpgs/index.html .

A report of the TeleGeography Research, “Global internet geography” (PriMetrica, Inc., 2010). http://www.telegeography.com/research-services/global-internet-geography/index.html .

T. Asami and S. Namiki, “Energy consumption targets for network systems,” in Proc. ECOC2008, Brussels, Belgium, paper Tu.4.A.3.

Working Groups of the Intergovernmental Panel on Climate Change (IPCC), Climate change 2007: Synthesis report (IPCC, 2007).

C. Lange, D. Kosiankowski, C. Gerlach, F.-J. Westphal, and A. Gladisch, “Energy consumption of telecommunication networks,” in Proc. ECOC2009, Vienna, Austria, Paper 5.5.3.

D. Kilper, “Energy efficient networks,” in Proc. OFC2011, paper OWI5.

J. Zhang, T. Wang, and N. Ansari, “Designing energy-efficient optical line terminal for TDM passive optical networks,” in Proc. Sarnoff2011, pp. 1–5.

C. Lange, D. Kosiankowski, and A. Gladisch, “Power and energy consumption in broadband fixed access network migration,” in Proc. ECOC 2011, paper We.8.C.2.

Sandvine, “Global Internet Phenomena Spotlight – North America, Fixed Access, Spring 2011” (Sandvine, 2011). http://www.sandvine.com/news/global_broadband_trends.asp .

M.-F. Huang, J. Yu, D. Qian, N. Cvijetic, and G.-K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC2009, San Diego, CA, paper OMV5.

D. Qian, T. Kwok, N. Cviject, J. Hu, and T. Wang, “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission,” in Proc. OFC2010, paper PDPD9.

L. Shi, S.-S. Lee, and B. Mukherjee, “An SLA-based energy-efficient scheduling scheme for EPON with sleep-mode ONU,” in Proc. OFC2011, paper OThB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of energy-efficient WDM-OFDM-PON using shared OFDM modulation modules.

Fig. 2
Fig. 2

Experimental setup for energy-efficient WDM-OFDM-PON with shared OFDM modulation modules.

Fig. 3
Fig. 3

BER curves of data1 for (a) energy-efficient WDM-OFDM-PON; (b) conventional WDM-OFDM-PON.

Fig. 4
Fig. 4

The calculated mathematical expectations of the number of running OFDM modulation modules with (a) different degrees of flexibility, (b) different variances; (c) The offered load over the course of an average day in North America [24]; (d) Required OFDM modulation modules for energy-efficient (F = 4, σ = 0.1) and conventional WDM-OFDM-PONs versus time in an average day.

Metrics