Abstract

An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately −8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately −17.4 dBm and showed negligible dependence on the fiber length.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10(11), 1650–1652 (1998).
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  4. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  5. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  6. H.-J. Song and J.-I. Song, “Simultaneous all-optical frequency downconversion technique utilizing an SOA-MZI for WDM radio over fiber (RoF) applications,” J. Lightwave Technol. 24(8), 3028–3034 (2006).
    [CrossRef]
  7. H.-J. Kim and J.-I. Song, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett. 23(12), 828–830 (2011).
    [CrossRef]
  8. A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
    [CrossRef]
  9. M. J. Connely, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, 2002).
  10. H.-J. Kim, J. I. Song, and H. J. Song, “An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications,” Opt. Express 15(6), 3384–3389 (2007).
    [CrossRef] [PubMed]
  11. Y. Li, Z. Zheng, L. Chen, S. Wen, and D. Fan, “Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier,” Appl. Opt. 48(16), 3008–3013 (2009).
    [CrossRef] [PubMed]
  12. J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998).
    [CrossRef]
  13. J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).
    [CrossRef]

2011

H.-J. Kim and J.-I. Song, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett. 23(12), 828–830 (2011).
[CrossRef]

2009

2007

2006

1998

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10(11), 1650–1652 (1998).
[CrossRef]

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998).
[CrossRef]

1995

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

Chang, G. K.

Chen, L.

D’Ottavi, A.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Dall’Ara, R.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Eckner, J.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Fan, D.

Guekos, G.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Iannone, E.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Jia, Z.

Kim, H.-J.

H.-J. Kim and J.-I. Song, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett. 23(12), 828–830 (2011).
[CrossRef]

H.-J. Kim, J. I. Song, and H. J. Song, “An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications,” Opt. Express 15(6), 3384–3389 (2007).
[CrossRef] [PubMed]

Lacey, J. P. R.

Li, Y.

Lim, C.

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10(11), 1650–1652 (1998).
[CrossRef]

Ma, J.

Madden, S. J.

Mecozzi, A.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10(11), 1650–1652 (1998).
[CrossRef]

Ortega, B.

Pastor, D.

Sang, X.

Scotti, S.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10(11), 1650–1652 (1998).
[CrossRef]

Song, H. J.

Song, H.-J.

Song, J. I.

Song, J.-I.

H.-J. Kim and J.-I. Song, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett. 23(12), 828–830 (2011).
[CrossRef]

H.-J. Song and J.-I. Song, “Simultaneous all-optical frequency downconversion technique utilizing an SOA-MZI for WDM radio over fiber (RoF) applications,” J. Lightwave Technol. 24(8), 3028–3034 (2006).
[CrossRef]

Spano, P.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

Summerfield, M. A.

Wang, T.

Wen, S.

Yao, J.

Yu, C.

Yu, J.

Zheng, Z.

Zhou, Z.

Appl. Opt.

IEEE Photon. Technol. Lett.

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10(11), 1650–1652 (1998).
[CrossRef]

H.-J. Kim and J.-I. Song, “Simultaneous WDM RoF signal generation utilizing an all-optical frequency upconverter based on FWM in an SOA,” IEEE Photon. Technol. Lett. 23(12), 828–830 (2011).
[CrossRef]

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7(4), 357–359 (1995).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express

Other

M. J. Connely, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of all-optical frequency downconversion. (a) Schematic diagram for a WDM RoF system using an all-optical frequency downconverter based on the FWM effect in an SOA. (b) Optical spectra at the input of the SOA. (c) Optical spectra at the output of the SOA. (d) Optical spectra at one of the DEMUX outputs (channel 1).

Fig. 2
Fig. 2

Experimental setup for all-optical frequency downconversion using the FWM effect in an SOA (BERT: bit-error-rate tester, OA: optical amplifier, PC: polarization controller).

Fig. 3
Fig. 3

Spectra at each node. (a) Optical spectra at the input of the SOA. (b) Optical spectra at the output of the SOA. (c) Optical spectra at the output of OBPF2. (d) Optical spectra at the output of OBPF2´. The resolution bandwidth (RBW) of the optical spectrum analyzer was 0.01nm.

Fig. 4
Fig. 4

RF spectra at the output of EA3. The RBW of an electrical spectrum analyzer was 1 MHz.

Fig. 5
Fig. 5

Measured BER as a function of the received optical power for single-channel downconversion and simultaneous downconversion for an optical IF signal in ODSB format (filtered by OBPF2). (a) Channel 1. (b) Channel 2.

Fig. 6
Fig. 6

Measured BER as a function of the received optical power for different lengths of SMFs. (a) Optical IF signal in ODSB format (filtered by OBPF2) and (b) Optical IF signal in OSSB format (filtered by OBPF2´).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E L O 1 ( t ) = E L O J 2 ( β ) cos ( ω L O 1 t + 2 φ L O )
E L O 2 ( t ) = E L O J 2 ( β ) cos ( ω L O 2 t 2 φ L O )
E R F C ( t ) = E R F C cos ( ω R F C t + φ R F C ) ,
P c 1 = | E L O 2 J 2 2 ( β ) E R F C r ( ω L O 1 ω L O 2 ) | 2
P c 2 = | E L O 2 J 2 2 ( β ) E R F C r ( ω L O 2 ω L O 1 ) | 2 ,
ω c 1 = ω R F C + ( ω L O 1 ω L O 2 ) = ω R F C 2 π f L O
ω c 2 = ω R F C + ( ω L O 2 ω L O 1 ) = ω R F C + 2 π f L O ,

Metrics