Abstract

We demonstrate a nonlinear signal processing approach for compensating nonlinear distortion caused by the Kerr effect in optical fiber transmission. The concept relies on propagating the signal through a separate all-optical module outside the link to apply tunable nonlinear distortion and phase-conjugation in series. We show this uniquely enables tunable regeneration of phase-encoded 40 Gb/s signals of different data-formats and number of WDM channels, to allow significantly higher transmission powers through single and multi-span fiber links. An improvement in the receiver power penalty by 3~4 dB for a bit-error-rate (BER) of ≈10−5 is achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
    [CrossRef] [PubMed]
  2. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
    [CrossRef]
  3. M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024 QAM-OFDM transmission using pilot-based phase noise mitigation,” In Proceedings of the 16th OptoeElectronics and Communications Conference pp. 752–753 (OECC 2011, Taiwan) (2011).
  4. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
    [CrossRef]
  5. X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” In Proceedings of the 37th European Conference on Optical Communication, paper Th.13.B.1 (ECOC 2011, Geneva) (2011).
  6. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
  7. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  9. A. Chowdhury, G. Raybon, R.-J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol. 23(1), 172–177 (2005).
    [CrossRef]
  10. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009). http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-2-279 .
  11. E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Proceedings of the Optical fiber communication conference, paper OThF1 (OFC/NFOEC 2010, San Diego) (Optical Society of America, 2011).
  12. J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Simple automatic nonlinear compensation with low complexity for implementation in coherent receivers,” in Proceedings of 36th European Conference on Optical Communication, paper P3.02, (ECOC 2010, Torino).
  13. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proceedings of 37th European Conference on Optical Communication, paper Tu.3.A.2, (ECOC 2011, Geneva) (2011).
  14. R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [CrossRef]
  15. S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996).
    [CrossRef]
  16. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
    [CrossRef]
  17. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
    [CrossRef] [PubMed]
  18. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  19. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
    [CrossRef]
  20. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
    [CrossRef] [PubMed]
  21. M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
    [CrossRef] [PubMed]
  22. X. Li, F. Zhang, Z. Chen, and A. Xu, “Suppression of XPM and XPM-induced nonlinear phase noise for RZ-DPSK signals in 40 Gbit/s WDM transmission systems with optimum dispersion mapping,” Opt. Express 15(26), 18247–18252 (2007).
    [CrossRef] [PubMed]
  23. F. Zhang, C. A. Bunge, K. Petermann, and A. Richter, “Optimum dispersion mapping of single-channel 40 Gbit/s return-to-zero differential phase-shift keying transmission systems,” Opt. Express 14(15), 6613–6618 (2006).
    [CrossRef] [PubMed]

2011 (1)

2010 (6)

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[CrossRef] [PubMed]

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

F. Zhang, C. A. Bunge, K. Petermann, and A. Richter, “Optimum dispersion mapping of single-channel 40 Gbit/s return-to-zero differential phase-shift keying transmission systems,” Opt. Express 14(15), 6613–6618 (2006).
[CrossRef] [PubMed]

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

2005 (1)

2003 (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

1996 (1)

S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996).
[CrossRef]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Adamiecki, A.

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Asobe, M.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Ayotte, S.

Beckett, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Berthold, J.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Birk, M.

Boertjes, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Borel, P. I.

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Bulla, D. A. P.

Bunge, C. A.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chandrasekhar, S.

Chen, Z.

Chikama, T.

S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996).
[CrossRef]

Choi, D.-Y.

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chowdhury, A.

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Cohen, O.

Cotter, D.

Cristiani, I.

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

Degiorgio, V.

Doerr, C. R.

Eggleton, B. J.

Ellis, A. D.

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Essiambre, R.-J.

Fejer, M. M.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010).
[CrossRef] [PubMed]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Huang, M.-F.

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Kaneko, S.

S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996).
[CrossRef]

Khoe, G.-D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

Langrock, C.

Laperle, C.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Leuthold, J.

Li, X.

Lingle, R.

Luan, F.

Lundstrom, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Luther-Davies, B.

Madden, S. J.

Magill, P.

Marazzi, L.

Martinelli, M.

Minzioni, P.

Miyazawa, H.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Morioka, T.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Nelson, L.

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Ohara, T.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Paniccia, M. J.

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Peckham, D. W.

Pelusi, M. D.

Petermann, K.

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Pusino, V.

Raybon, G.

Richardson, D. J.

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[CrossRef] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Richter, A.

Roberts, K.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Rong, H.

Sato, K.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Shao, Y.

Sinsky, J. H.

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Spälter, S.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Tadanaga, O.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Takada, A.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Takara, H.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

Wang, T.

Watanabe, S.

S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996).
[CrossRef]

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Xu, A.

Xu, S.

Yamawaku, J.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

Yu, J.

Zhang, F.

Zhao, J.

Zhou, X.

Zhu, B.

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Electron. Lett. (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[CrossRef]

IEEE Commun. Mag. (1)

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photonics (1)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996).
[CrossRef]

Opt. Lett. (1)

Science (1)

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[CrossRef] [PubMed]

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009). http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-2-279 .

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Proceedings of the Optical fiber communication conference, paper OThF1 (OFC/NFOEC 2010, San Diego) (Optical Society of America, 2011).

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Simple automatic nonlinear compensation with low complexity for implementation in coherent receivers,” in Proceedings of 36th European Conference on Optical Communication, paper P3.02, (ECOC 2010, Torino).

W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proceedings of 37th European Conference on Optical Communication, paper Tu.3.A.2, (ECOC 2011, Geneva) (2011).

X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” In Proceedings of the 37th European Conference on Optical Communication, paper Th.13.B.1 (ECOC 2011, Geneva) (2011).

M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024 QAM-OFDM transmission using pilot-based phase noise mitigation,” In Proceedings of the 16th OptoeElectronics and Communications Conference pp. 752–753 (OECC 2011, Taiwan) (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic for compensating nonlinear distortion by the Kerr-effect in optical fiber transmission by using a TD-OPC module to apply tunable nonlinear signal distortion (TD) and OPC in series. The concept is illustrated by an effective negative power representing the reversal in the nonlinear phase shift by OPC to produce an opposing nonlinear phase distortion to that induced in the fiber link. In this example, symmetry between signal dispersion in the TD-stage and multiple spans of the fiber link is achieved with respect to where the nonlinearity has most effect before being weakened by fiber loss, within the approximate distance, Leff.

Fig. 2
Fig. 2

a) Experimental set-up for tunable compensation of the Kerr effect in fiber transmission by connecting the TD-OPC module after the Tx. b) Measured evolution of the optical spectrum of a 3 × 40 Gb/s NRZ DPSK signal from (i) Tx, (ii) input and output of HNLF, and (iii) input of the optical fiber transmission link, both with and without TD-OPC for Pin = 72 mW. Inset: Dual span link input spectra on 5 nm wavelength range to (thick curve) first and (thin curves) second fiber span for 40 Gb/s RZ-DPSK signal with Pin = 47 mW (average per span).

Fig. 3
Fig. 3

40 Gb/s CS-RZ DPSK signal regeneration: a) Impact of Pin on BER measured at output of the Rx after link transmission, with and without TD-OPC, or pre-dispersion (GVD), and for Prx = −8.7 dBm, and b) corresponding effect of PNL on the link output BER at Pin = 72 mW and Prx = −6.9 dBm. Inset: link output optical spectra (1.4 nm span, RBW = 0.07 nm) and signal eye diagrams after photo-receiver for with and without OPC, or pre-GVD.

Fig. 4
Fig. 4

Measured optimum PNL for minimizing link output signal BER versus Pin for signal at 1558.98 nm wavelength (Ch. 23) with different data formats and number of spans and WDM channels.

Fig. 5
Fig. 5

Single and dual-span link transmission performance (a) Output signal BER for 1 × 40 Gb/s RZ DPSK from (thin curves) single and (thick) dual span links, with Pin of 72 and 47 mW, respectively, comparing with and without TD-OPC, and the B2B case. (b) Dual-span link output signal eye diagrams at receiver before DPSK demodulator for Pin = 47 mW and (c) corresponding optical spectra.

Fig. 6
Fig. 6

WDM (100 GHz spaced) NRZ-DPSK signal regeneration: Output signal BER from single span link vs. launch power at Prx = −5 dBm for (coloured curves) 3 × and (grey) 1 × 40 Gb/s signal with/without TD-OPC and pre-dispersion for ITU channels 22-24 center. Inset: Link output signal eye diagrams after photoreceiver on 50 ps time span and optical spectrum (5 nm span, 0.07 nm RBW) for Pin = 72 mW (per ch.).

Tables (1)

Tables Icon

Table 1 Q-factor Improvement by TD-OPC for Different Data Formats, Number of Channels and Fiber Spans

Metrics