Abstract

We report on an immersion hybrid optics specially designed for focusing ultrashort laser pulses into a polymer for direct laser writing via two-photon polymerization. The hybrid optics allows for well-corrected focusing over a large working distance range of 577 μm with a numerical aperture (NA) of 1.33 and low internal dispersion. We combine the concepts of an aplanatic solid immersion lens (ASIL) for achieving a high NA with a diffractive optical element (DOE) for correction of aberrations. To demonstrate the improvements for volume structuring of the polymer, we compare the achievable structure sizes of our optics with a commercially available oil-immersion objective (100x, NA=1.4).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef] [PubMed]
  2. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
    [CrossRef] [PubMed]
  3. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
    [CrossRef] [PubMed]
  4. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
    [CrossRef]
  5. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010).
    [CrossRef] [PubMed]
  6. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36, 67–69 (2011).
    [CrossRef] [PubMed]
  7. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
    [CrossRef] [PubMed]
  8. M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010).
    [CrossRef]
  9. U. Fuchs, U. D. Zeitner, and A. Tünnermann, “Hybrid optics for focusing ultrashort laser pulses,” Opt. Lett. 31, 1516–1518 (2006).
    [CrossRef] [PubMed]
  10. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  11. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
    [CrossRef] [PubMed]
  12. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
    [CrossRef]
  13. M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 20008–20028 (2008).
    [CrossRef] [PubMed]
  14. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
    [CrossRef]
  15. “Zemax optical design programm,” ZEMAX Development Center Corporation USA.
  16. ”PSF Lab” available at onemolecule.chem.uwm.edu/index.php/software.
  17. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 2006).

2011 (1)

2010 (2)

2008 (1)

2007 (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[CrossRef]

2006 (1)

2005 (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

2004 (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef] [PubMed]

2001 (3)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

1997 (2)

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Aspnes, E.

Booth, M. J.

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

Busch, K.

Chichkov, B. N.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef] [PubMed]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 2006).

Essig, S.

Fuchs, U.

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Hayashi, S.

Ichimura, I.

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Kawata, S.

Kino, G. S.

Lang, M.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Maruo, S.

Milster, T. D.

Nakamura, O.

Nasse, M. J.

Ostendorf, A.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[CrossRef]

Ovsianikov, A.

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef] [PubMed]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 2006).

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef] [PubMed]

Staude, I.

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Thiel, M.

Tünnermann, A.

Ünlü, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

von Freymann, G.

Wegener, M.

Wilson, T.

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

Woehl, J. C.

Wolff, C.

Zeitner, U. D.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253, 6599–6602 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

J. Biomed. Opt. (1)

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Other (3)

“Zemax optical design programm,” ZEMAX Development Center Corporation USA.

”PSF Lab” available at onemolecule.chem.uwm.edu/index.php/software.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the specially designed hybrid optics consisting of an aspheric lens, a diffractive optical element (DOE) and a half ball lens working as aplanatic solid immersion lens (ASIL).

Fig. 2
Fig. 2

Wavefront error of the focusing optics without a) and with the DOE b). The wavefront error is reduced below 0.05 λ for the complete spectrum of the laser pulses by the DOE.

Fig. 3
Fig. 3

Cross-sections of the calculated PSFs in the focal plane of hybrid optics (NA = 1.33) and microscope objective (NA = 1.40) for different z-positions of the focus inside the polymer. The intensities are individually normalized for each objective to the peak intensity on the substrate surface (z = 0 μm). The peak intensity of the microscope objective decreases with increasing z-positions of the focus, due to the refractive-index-mismatch-induced aberrations. In contrast, the PSF of the hybrid optics remains constant for all z-positions over the complete working distance range.

Fig. 4
Fig. 4

Temporal broadening of laser pulses caused by the GDD of the focusing optics in dependence of the initial pulse duration. The values of the introduced GDD for hybrid optics and microscope objective are 842 fs2 and 2000 fs2, respectively.

Fig. 5
Fig. 5

Diameter of voxels on the substrate surface written with microscope objective (a) and hybrid optics (b). In both cases the smallest feature sizes are close to 200 nm.

Fig. 6
Fig. 6

Measured linewidth vs. writing depth inside the polymer when focusing with the Zeiss Plan-Apochromat (a) and the hybrid optics (b). Scanning speed for all lines was 10 μm/s. Only (b) shows constant linewidths for increasing writing depths and non-varying writing parameters. The dashed lines are a guide to the eye.

Fig. 7
Fig. 7

Schematic of the illumination path of an infinity-corrected microscope objective. BS: Babinet-Soleil compensator; OBJ: microscope objective; P: probe. The origin of the xyz coordinate system is placed in the corrected Gaussian focus.

Tables (1)

Tables Icon

Table 1 Calculated Coefficients Ai of the Phase function of the DOE According to Eq. (2).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d = R ( 1 + 1 n ) ,
Φ = i = 1 10 A i ρ 2 i ,
Δ τ = τ 0 1 + 4 ln 2 G V D z τ 0 2 ,
G V D = d 2 k d ω 2 = λ 0 3 2 π c 2 d 2 n d λ 2 ,
e ill ( r s , ϕ s , z s ) = i k 1 2 π 0 α 0 2 π E 3 exp [ i k 0 ( Ψ Ψ * ) ] exp [ i k 1 r s sin θ 1 cos ( ϕ ϕ s ) ] × exp ( i k 3 z s cos θ 3 ) sin θ 1 d ϕ d θ 1 .
E 1 = A ill ( θ 1 * ) P _ ( 1 ) L _ ( 1 ) R _ B S _ ill E 0 = A ill ( θ 1 * ) R _ B S _ ill E 0 .
A ill ( θ 1 * ) = exp [ β G 2 sin 2 θ 1 * sin 2 α * ] cos 1 / 2 θ 1 * ,
L _ ( 1 ) = ( cos θ 1 0 sin θ 1 0 1 0 sin θ 1 0 cos θ 1 ) , P _ ( j ) = ( cos θ j 0 sin θ j 0 1 0 sin θ j 0 cos θ j ) , R _ = ( cos ϕ sin ϕ 0 sin ϕ cos ϕ 0 0 0 1 ) , B S _ ill = ( A ill + B ill 0 B ill A ill 0 0 0 1 ) .
A ill ± = cos ( δ ill / 2 ) ± i cos ( 2 ϕ BS , ill ) sin ( δ ill / 2 ) , B ill = i sin ( 2 ϕ BS , ill ) sin ( δ ill / 2 ) .
E 3 = R _ 1 P _ ( 3 ) 1 I _ ill E 1 = A ill ( θ 1 * ) R _ 1 P _ ( 3 ) 1 I _ ill R _ B S _ , ill E 0 ,
I _ ill = ( T | | ill 0 0 0 T ill 0 0 0 T | | ill ) .
T pol , ill = t 12 pol t 23 pol exp [ i ( β β * ) ] 1 + r 12 pol r 23 pol exp [ 2 i ( β β * ) ] ,
t i j = 2 1 + a i j b i j , t i j = 2 a i j + b i j , r i j = 1 a i j b i j 1 + a i j b i j , r i j | | = a i j b i j a i j + b i j ,
E 3 , x = A ill ( θ 1 * ) ( T | | ill cos θ 3 T ill ) ( A ill + cos 2 ϕ + B ill sin ϕ cos ϕ ) + T ill A ill + , E 3 , y = A ill ( θ 1 * ) ( T | | ill cos θ 3 T ill ) ( A ill + sin ϕ cos ϕ B ill cos 2 ϕ ) + B ill T | | ill cos θ 3 , E 3 , z = A ill ( θ 1 * ) T | | ill sin θ 3 ( A ill + cos ϕ + B ill sin ϕ ) .
0 2 π sin ( n ϕ ) cos ( n ϕ ) exp [ i ρ cos ( ϕ γ ) ] d ϕ = 2 π i n J n ( ρ ) sin ( n γ ) cos ( n γ )
e ill , x ( r s , ϕ s , z s ) = i k 1 [ A ill + I ill ( 2 ) cos ( 2 ϕ s ) + B ill I ill ( 2 ) sin ( 2 ϕ s ) + A ill + I ill ( 0 ) ] , e ill , y ( r s , ϕ s , z s ) = i k 1 [ A ill + I ill ( 2 ) sin ( 2 ϕ s ) B ill I ill ( 2 ) cos ( 2 ϕ s ) + B ill I ill ( 0 ) ] , e ill , z ( r s , ϕ s , z s ) = 2 k 1 [ A ill + I ill ( 1 ) cos ϕ s + B ill I ill ( 1 ) sin ϕ s ] ,
I ill ( 0 ) = 0 α A ill ( θ 1 * ) J 0 ( k 1 r s sin θ 1 ) ( T ill + T | | ill cos θ 3 ) exp [ i k 0 ( Ψ Ψ * ) ] × exp ( i k 3 z s cos θ 3 ) sin θ 1 d θ 1 , I ill ( 1 ) = 0 α A ill ( θ 1 * ) J 1 ( k 1 r s sin θ 1 ) T | | ill sin θ 3 exp [ i k 0 ( Ψ Ψ * ) ] × exp ( i k 3 z s cos θ 3 ) sin θ 1 d θ 1 , I ill ( 2 ) = 0 α A ill ( θ 1 * ) J 2 ( k 1 r s sin θ 1 ) ( T ill T | | ill cos θ 3 ) exp [ i k 0 ( Ψ Ψ * ) ] × exp ( i k 3 z s cos θ 3 ) sin θ 1 d θ 1 .

Metrics