Abstract

A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotech. Sci. Appl. 4, 1–10 (2010).
  2. T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
    [CrossRef] [PubMed]
  3. P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol. 16, 418–424 (2010).
    [CrossRef] [PubMed]
  4. M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
    [CrossRef]
  5. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
    [CrossRef]
  6. Product info: http://www.axis-shield.com , visited March 15, 2012.
  7. D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.
  8. L. Li, “Recent development of micromachined biosensors,” IEEE Sens. J. 11, 305–311 (2011).
    [CrossRef]
  9. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
    [CrossRef] [PubMed]
  10. Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
    [CrossRef] [PubMed]
  11. C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
    [CrossRef] [PubMed]
  12. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
    [CrossRef] [PubMed]
  13. A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
    [CrossRef] [PubMed]
  14. E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
    [CrossRef] [PubMed]
  15. J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
    [CrossRef]
  16. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
    [CrossRef] [PubMed]
  17. F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J. 10, 1185–1191 (2010).
    [CrossRef]
  18. J. G. Ruperez, V. Toccafondo, M. J. Bañuls, J. G. Castelló, A. Griol, S. Peransi-Llopis, and A. Maquieira, “Label-free antibody detection using band edge fringes in soi planar photonic crystal waveguides in the slow-light regime,” Opt. Express 18, 24276–24286 (2010).
    [CrossRef]
  19. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32, 3284–3286 (2007).
    [CrossRef] [PubMed]
  20. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
    [CrossRef]
  21. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
    [CrossRef] [PubMed]
  22. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  23. S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
    [CrossRef] [PubMed]
  24. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  25. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
    [CrossRef] [PubMed]
  26. A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
    [CrossRef]
  27. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
    [CrossRef] [PubMed]
  28. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
    [CrossRef]
  29. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
    [CrossRef]
  30. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  31. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
    [CrossRef] [PubMed]
  32. Commercially available software supplied by KJ Innovation, http://software.kjinnovation.com/GD-Calc.html visited Sept. 15, 2011.
  33. Z. Popovic and B. D. Popovic, Introductory Electromagnetics (Prentice Hall, Inc., 2000).
  34. M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
    [CrossRef]
  35. C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley and Sons, Inc., 1998). Chap. 5.
    [CrossRef]
  36. J. Vrs, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
    [CrossRef]
  37. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
    [CrossRef]
  38. M. G. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Optics 12, 555–563 (1973).
    [CrossRef]

2011 (2)

2010 (8)

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
[CrossRef] [PubMed]

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotech. Sci. Appl. 4, 1–10 (2010).

P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol. 16, 418–424 (2010).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J. 10, 1185–1191 (2010).
[CrossRef]

J. G. Ruperez, V. Toccafondo, M. J. Bañuls, J. G. Castelló, A. Griol, S. Peransi-Llopis, and A. Maquieira, “Label-free antibody detection using band edge fringes in soi planar photonic crystal waveguides in the slow-light regime,” Opt. Express 18, 24276–24286 (2010).
[CrossRef]

2009 (5)

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
[CrossRef] [PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

2007 (4)

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32, 3284–3286 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

2006 (4)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

2004 (3)

C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[CrossRef]

J. Vrs, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

2001 (1)

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

1997 (1)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

1973 (1)

M. G. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Optics 12, 555–563 (1973).
[CrossRef]

Akin, D.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Alam, M. A.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Altug, H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Amori, M.

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

Baller, M. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Banuls, M. J.

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

Bañuls, M. J.

Barrios, C. A.

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

Bashir, R.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Bassetti, S.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Beheiry, M. E.

Biedert, S.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Bingisser, R.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Bishnoi, S. W.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley and Sons, Inc., 1998). Chap. 5.
[CrossRef]

Bohunicky, B.

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotech. Sci. Appl. 4, 1–10 (2010).

Breaker, R.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Breidthardt, T.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[CrossRef]

Broyles, S.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Buerge, C.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Bunimovich, Y. L.

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Burgess, I. B.

Burr, G. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Bynum, M. A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Castelló, J. G.

Chan, L. L.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

Chang, T. Y.

Choi, C. J.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

Chow, E.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Cianciara, J.

P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol. 16, 418–424 (2010).
[CrossRef] [PubMed]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

Cui, Y.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef] [PubMed]

Cunningham, B. T.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

Demirci, U.

D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.

Dokmeci, M. R.

D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.

Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Ellington, A. D.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
[CrossRef] [PubMed]

Esener, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Fahmy, T. M.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Fan, S.

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Fauchet, P. M.

Floyd, D. L.

Fritz, J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

Gerber, C.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Gheith, M. K.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Gimzewski, J. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Gntherodt, H. J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Gonzlez-Pedro, V.

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[CrossRef]

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Griol, A.

Grot, A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Gupta, A. K.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Hale, M. G.

M. G. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Optics 12, 555–563 (1973).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Hartwiger, S.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Heath, J. R.

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Hochholzer, W.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Hogle, J. M.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
[CrossRef] [PubMed]

Hsiao, F.

F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J. 10, 1185–1191 (2010).
[CrossRef]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley and Sons, Inc., 1998). Chap. 5.
[CrossRef]

Icoz, K.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Im, H.

A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Ji, J.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Johnson, B. R.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Johnson, D. H.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[CrossRef]

Khademhosseini, A.

D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.

Knudsen, S. M.

C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
[CrossRef] [PubMed]

Kuhlenschmidt, M.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

Kuhlenschmidt, T.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

Kwong, G.

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Ladisch, M. R.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Lang, H. P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Larson, D. N.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[CrossRef]

Lee, C.

F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J. 10, 1185–1191 (2010).
[CrossRef]

Lee, J.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Lee, M. R.

Lee, T. W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Lesuffleur, A.

A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Levi, O.

Levin, C. S.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Li, L.

L. Li, “Recent development of micromachined biosensors,” IEEE Sens. J. 11, 305–311 (2011).
[CrossRef]

Lieber, C. M.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef] [PubMed]

Lindquist, N.-C.

A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Liu, V.

Loncar, M.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Manalis, S. R.

C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
[CrossRef] [PubMed]

Maquieira, A.

J. G. Ruperez, V. Toccafondo, M. J. Bañuls, J. G. Castelló, A. Griol, S. Peransi-Llopis, and A. Maquieira, “Label-free antibody detection using band edge fringes in soi planar photonic crystal waveguides in the slow-light regime,” Opt. Express 18, 24276–24286 (2010).
[CrossRef]

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

Meyer, E.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Mirkarimi, L. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Morrison, D. W. G.

D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.

Mousa, S. A.

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotech. Sci. Appl. 4, 1–10 (2010).

Mueller, C.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Nair, P. R.

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

Noveanu, M.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Oh, S. H.

A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Paddon, P.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Park, H.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef] [PubMed]

Peransi-Llopis, S.

Pineda, M. F.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

Popovic, B. D.

Z. Popovic and B. D. Popovic, Introductory Electromagnetics (Prentice Hall, Inc., 2000).

Popovic, Z.

Z. Popovic and B. D. Popovic, Introductory Electromagnetics (Prentice Hall, Inc., 2000).

Potocki, M.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Puchades, R.

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

Quan, Q.

Querry, M. R.

M. G. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Optics 12, 555–563 (1973).
[CrossRef]

Reed, M. A.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Reichlin, T.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Roberts, A.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Robotti, K. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Rothuizen, H.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Rozell, C. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

Ruperez, J. G.

Savran, C. A.

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
[CrossRef] [PubMed]

Schaub, N.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Shin, Y. S.

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Sigalas, M. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Sigworth, F. J.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Soares, J. A. N. T.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Stefaniuk, P.

P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol. 16, 418–424 (2010).
[CrossRef] [PubMed]

Stelzig, C.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Stern, E.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Steuer, S.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Tang, S. K. Y.

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Toccafondo, V.

Twerenbold, R.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Vettiger, P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Vrs, J.

J. Vrs, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef]

Wagner, R.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Wei, Q.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Wiercinska-Drapalo, A.

P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol. 16, 418–424 (2010).
[CrossRef] [PubMed]

Winkler, K.

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Yang, J. C.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
[CrossRef] [PubMed]

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Yeo, W.

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Young, J. F.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Zlatanovic, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

Anal. Chem. (2)

C. A. Savran, S. M. Knudsen, A. D. Ellington, and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules,” Anal. Chem. 76, 3194–3198 (2004).
[CrossRef] [PubMed]

J. Lee, K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran, “Diffractometric detection of proteins using microbead-based rolling circle amplification,” Anal. Chem. 82, 197–202 (2010).
[CrossRef]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8 – 26 (2008).
[CrossRef] [PubMed]

Appl. Optics (1)

M. G. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Optics 12, 555–563 (1973).
[CrossRef]

Appl. Phys. Lett. (2)

A. Lesuffleur, H. Im, N.-C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Biophys. J. (1)

J. Vrs, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef]

Biosens. Bioelectron. (2)

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24, 2334–2338 (2009).
[CrossRef] [PubMed]

M. J. Banuls, V. Gonzlez-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25, 1460–1466 (2010).
[CrossRef]

IEEE Sens. J. (3)

F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J. 10, 1185–1191 (2010).
[CrossRef]

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J. 9, 470–477 (2009).
[CrossRef]

L. Li, “Recent development of micromachined biosensors,” IEEE Sens. J. 11, 305–311 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. L. Bunimovich, Y. S. Shin, W. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution,” J. Am. Chem. Soc. 128, 16323–16331 (2006).
[CrossRef] [PubMed]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[CrossRef]

N. Engl. J. Med. (1)

T. Reichlin, W. Hochholzer, S. Bassetti, S. Steuer, C. Stelzig, S. Hartwiger, S. Biedert, N. Schaub, C. Buerge, M. Potocki, M. Noveanu, T. Breidthardt, R. Twerenbold, K. Winkler, R. Bingisser, and C. Mueller, “Early diagnosis of myocardial infarction with sensitive cardiac troponinassays,” N. Engl. J. Med. 361, 858–867 (2009).
[CrossRef] [PubMed]

Nano Lett. (3)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[CrossRef]

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale ph meter,” Nano Lett. 6, 1687–1692 (2006).
[CrossRef] [PubMed]

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7, 3405–3409 (2007).
[CrossRef] [PubMed]

Nanotech. Sci. Appl. (1)

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotech. Sci. Appl. 4, 1–10 (2010).

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A. (2)

A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, “Anomalous resonance in a nanomechanical biosensor,” Proc. Natl. Acad. Sci. U. S. A. 103, 13362–13367 (2006).
[CrossRef] [PubMed]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103, 17143–17148 (2006).
[CrossRef] [PubMed]

Science (2)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[CrossRef] [PubMed]

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef] [PubMed]

Sens. Actuator B (1)

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuator B 141, 13–19 (2009).
[CrossRef]

World J. Gastroenterol. (1)

P. Stefaniuk, J. Cianciara, and A. Wiercinska-Drapalo, “Present and future possibilities for early diagnosis of hepatocellular carcinoma,” World J. Gastroenterol. 16, 418–424 (2010).
[CrossRef] [PubMed]

Other (5)

Product info: http://www.axis-shield.com , visited March 15, 2012.

D. W. G. Morrison, M. R. Dokmeci, U. Demirci, and A. Khademhosseini, Biomedical Nanostructures (John Wiley & Sons, Inc., 2008). Chap. 17.

Commercially available software supplied by KJ Innovation, http://software.kjinnovation.com/GD-Calc.html visited Sept. 15, 2011.

Z. Popovic and B. D. Popovic, Introductory Electromagnetics (Prentice Hall, Inc., 2000).

C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley and Sons, Inc., 1998). Chap. 5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A summary of how the sensor works. (A) A sample is pumped through the PC membrane and two particles are caught in the membrane holes. (B) Captured particles are detected as bright spots on a dark background by an optical microscope and a CCD-camera.

Fig. 2
Fig. 2

(A) Cross section and (B) top view of the designed photonic crystal membrane. (C) Simulated transmittance and reflectance for a normal incidence plane wave is given as a function of wavelengths from 490 to 692 nm.

Fig. 3
Fig. 3

A halogen light source connected to a monochromator provides the microscope with backside illumination with tunable wavelength. A photonic crystal membrane is placed in the field of view and imaged with a CCD-camera. Transmitted intensity through the membrane can hence be measured with spatial resolution, and as a function of wavelength.

Fig. 4
Fig. 4

(A) Illustration of photonic crystal (PC) membrane chip after processing. (B) SEM images show top views of the PC membrane. Two defects in the PC membrane have been magnified.

Fig. 5
Fig. 5

Images of the PC membrane taken with the CCD camera at nine different wavelengths. The dashed black line bounds pixels M and correspond to the hole matrix. Pixels P and L are centered at pixels corresponding to the two defects in the PC membrane. The color bar shows pixel values, normalized with respect to the transmitted intensity recorded without the membrane present, at each wavelength respectively.

Fig. 6
Fig. 6

(A) Average value of pixels M, defined in Fig. 5, corresponding to the transmittance of the PC membrane as a function of wavelength. (B) The average of pixels M is compared to average values of pixels P and L. Pixels P and L are also defined in Fig. 5, and correspond to the trapped nano-particle and lattice defect, respectively. Pixel values of the CCD camera have been normalized with respect to the transmitted intensity recorded without the membrane present, at each wavelength respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a < λ < 2 a ,
r p λ / ( 2 π ε p ) .
P R = 4 π 3 ε 0 μ 0 ( 2 π λ ) 4 | ε p ε m ε p + 2 ε m | 2 ε m 5 2 r p 6 E p 2 .

Metrics