Abstract

A periodic grating with an integer number of periods is fabricated at the resist-coated wall of a cylinder by exposing a circularly symmetrical planar high index phase mask to a cylindrical wave. This extends the spatial coherence features easily achievable in a planar 2D space to the 3D space of cylindrical waves and elements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Spooncer, R. Heger, B. E. Jones, “Non-contacting torque measurement by a modified moiré fringe method,” Sens. Actuators A: Phys. 31(1-3), 178–181 (1992).
    [CrossRef]
  2. W. H. Yeh, W. Bletscher, M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Rev. Sci. Instrum. 69(8), 3068–3071 (1998).
    [CrossRef]
  3. R. Kashyap, “Method and device for recording a refractive index pattern in an optical medium,” U.S. Patent 6,284,437 (Sept. 4, 2001).
  4. R. Kashyap, A. Swanton, R. P. Smith, “Infinite length fibre gratings,” Electron. Lett. 35(21), 1871–1872 (1999).
    [CrossRef]
  5. C. J. Moran-Iglesias, A. Last, J. Mohr, “Improved grating spectrometer,” Proc. SPIE 5962, 660–668 (2005).
  6. E. Gamet, A. V. Tishchenko, O. Parriaux, “Cancellation of the zeroth order in a phase mask by mode interplay in a high index contrast binary grating,” Appl. Opt. 46(27), 6719–6726 (2007).
    [CrossRef] [PubMed]
  7. N. Lyndin, “MC Grating Software Development Company,” http://www.mcgrating.com/ .
  8. O. Parriaux, Y. Jourlin, and N. Lyndin, “Cylindrical grating rotation sensor,” European Patent EP2233892A1 (Sept. 29, 2010).
  9. S. Tonchev, Y. Jourlin, S. Reynaud, M. Guttmann, M. Wissmann, R. Krajewski, and M. Joswik, “Photolithography of variable depth gratings on a polymer substrate for the mastering of 3D diffractive optical elements,” presented at 14th Micro-Optics Conference, Brussels, Belgium, Sept. 25–27, 2008).

2007

2005

C. J. Moran-Iglesias, A. Last, J. Mohr, “Improved grating spectrometer,” Proc. SPIE 5962, 660–668 (2005).

1999

R. Kashyap, A. Swanton, R. P. Smith, “Infinite length fibre gratings,” Electron. Lett. 35(21), 1871–1872 (1999).
[CrossRef]

1998

W. H. Yeh, W. Bletscher, M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Rev. Sci. Instrum. 69(8), 3068–3071 (1998).
[CrossRef]

1992

R. C. Spooncer, R. Heger, B. E. Jones, “Non-contacting torque measurement by a modified moiré fringe method,” Sens. Actuators A: Phys. 31(1-3), 178–181 (1992).
[CrossRef]

Bletscher, W.

W. H. Yeh, W. Bletscher, M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Rev. Sci. Instrum. 69(8), 3068–3071 (1998).
[CrossRef]

Gamet, E.

Heger, R.

R. C. Spooncer, R. Heger, B. E. Jones, “Non-contacting torque measurement by a modified moiré fringe method,” Sens. Actuators A: Phys. 31(1-3), 178–181 (1992).
[CrossRef]

Jones, B. E.

R. C. Spooncer, R. Heger, B. E. Jones, “Non-contacting torque measurement by a modified moiré fringe method,” Sens. Actuators A: Phys. 31(1-3), 178–181 (1992).
[CrossRef]

Kashyap, R.

R. Kashyap, A. Swanton, R. P. Smith, “Infinite length fibre gratings,” Electron. Lett. 35(21), 1871–1872 (1999).
[CrossRef]

Last, A.

C. J. Moran-Iglesias, A. Last, J. Mohr, “Improved grating spectrometer,” Proc. SPIE 5962, 660–668 (2005).

Mansuripur, M.

W. H. Yeh, W. Bletscher, M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Rev. Sci. Instrum. 69(8), 3068–3071 (1998).
[CrossRef]

Mohr, J.

C. J. Moran-Iglesias, A. Last, J. Mohr, “Improved grating spectrometer,” Proc. SPIE 5962, 660–668 (2005).

Moran-Iglesias, C. J.

C. J. Moran-Iglesias, A. Last, J. Mohr, “Improved grating spectrometer,” Proc. SPIE 5962, 660–668 (2005).

Parriaux, O.

Smith, R. P.

R. Kashyap, A. Swanton, R. P. Smith, “Infinite length fibre gratings,” Electron. Lett. 35(21), 1871–1872 (1999).
[CrossRef]

Spooncer, R. C.

R. C. Spooncer, R. Heger, B. E. Jones, “Non-contacting torque measurement by a modified moiré fringe method,” Sens. Actuators A: Phys. 31(1-3), 178–181 (1992).
[CrossRef]

Swanton, A.

R. Kashyap, A. Swanton, R. P. Smith, “Infinite length fibre gratings,” Electron. Lett. 35(21), 1871–1872 (1999).
[CrossRef]

Tishchenko, A. V.

Yeh, W. H.

W. H. Yeh, W. Bletscher, M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Rev. Sci. Instrum. 69(8), 3068–3071 (1998).
[CrossRef]

Appl. Opt.

Electron. Lett.

R. Kashyap, A. Swanton, R. P. Smith, “Infinite length fibre gratings,” Electron. Lett. 35(21), 1871–1872 (1999).
[CrossRef]

Proc. SPIE

C. J. Moran-Iglesias, A. Last, J. Mohr, “Improved grating spectrometer,” Proc. SPIE 5962, 660–668 (2005).

Rev. Sci. Instrum.

W. H. Yeh, W. Bletscher, M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Rev. Sci. Instrum. 69(8), 3068–3071 (1998).
[CrossRef]

Sens. Actuators A: Phys.

R. C. Spooncer, R. Heger, B. E. Jones, “Non-contacting torque measurement by a modified moiré fringe method,” Sens. Actuators A: Phys. 31(1-3), 178–181 (1992).
[CrossRef]

Other

R. Kashyap, “Method and device for recording a refractive index pattern in an optical medium,” U.S. Patent 6,284,437 (Sept. 4, 2001).

N. Lyndin, “MC Grating Software Development Company,” http://www.mcgrating.com/ .

O. Parriaux, Y. Jourlin, and N. Lyndin, “Cylindrical grating rotation sensor,” European Patent EP2233892A1 (Sept. 29, 2010).

S. Tonchev, Y. Jourlin, S. Reynaud, M. Guttmann, M. Wissmann, R. Krajewski, and M. Joswik, “Photolithography of variable depth gratings on a polymer substrate for the mastering of 3D diffractive optical elements,” presented at 14th Micro-Optics Conference, Brussels, Belgium, Sept. 25–27, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cylindrical grating lithography principle.

Fig. 2
Fig. 2

Efficiency of the transmitted orders versus the silicon nitride thickness for different grating periods.

Fig. 3
Fig. 3

(a) Design of the phase mask and (b) SEM images of the phase mask.

Fig. 4
Fig. 4

The cylindrical exposure setup.

Fig. 5
Fig. 5

Cross-section of the radially polarized exposure beam.

Fig. 6
Fig. 6

Micrograph of the phase mask and the reflective cone at the center.

Fig. 7
Fig. 7

Grating characterization. (a) AFM image of the grating at the cylinder wall and (b) SEM image of the resist grating at the cylinder flank.

Fig. 8
Fig. 8

Micrograph of the printed grating (period below 800 nm) on the 8 mm diameter photoresist coated cylinder.

Metrics