Abstract

The spontaneous emission rate and Purcell factor of self-assembled quantum wires embedded in photonic crystal micro-cavities are measured at 80 K by using micro-photoluminescence, under transient and steady state excitation conditions. The Purcell factors fall in the range 1.1 – 2 despite the theoretical prediction of ≈15.5 for the figure of merit. We explain this difference by introducing a polarization dependence on the cavity orientation, parallel or perpendicular with respect to the wire axis, plus spectral and spatial detuning factors for the emitters and the cavity modes, taking in account the finite size of the quantum wires.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
    [CrossRef]
  2. S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
    [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  4. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  5. H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28(23), 2390–2392 (2003).
    [CrossRef] [PubMed]
  6. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
    [CrossRef] [PubMed]
  7. T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
    [CrossRef]
  8. D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
    [CrossRef]
  9. J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).
  10. C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
    [CrossRef]
  11. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
    [CrossRef]
  12. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
    [CrossRef] [PubMed]
  13. D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
    [CrossRef]
  14. B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
    [CrossRef]
  15. S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
    [CrossRef]
  16. D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
    [CrossRef]
  17. A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
    [CrossRef]
  18. L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
    [CrossRef]
  19. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
    [CrossRef] [PubMed]
  20. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
    [CrossRef] [PubMed]
  21. J. M. Gérard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
    [CrossRef]
  22. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010).
    [CrossRef]
  23. K. A. Atlasov, “Light control and microcavity lasers based on quantum wires integrated in photonic-crystal cavities,” Thesis in Ecole Polytechnique Fédérale de Lausanne, no. 4359 (2009).
  24. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
    [CrossRef] [PubMed]
  25. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [CrossRef]
  26. G. Gayral and J. M. Gerard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
    [CrossRef]
  27. B. Gayral, “Controling the spontaneous emission dynamics in semiconductor microcavities: an experimental approach, PhD thesis” Ann. Phys. Fr. 26, 1–133 (2001).
  28. M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
    [CrossRef]
  29. J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
    [CrossRef]
  30. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
    [CrossRef]
  31. A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
    [CrossRef]
  32. B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
    [CrossRef] [PubMed]
  33. D. Fuster, “Crecimiento y caracterización de hilos cuánticos de Arseniuro de Indio sobre substratos de Fosfuro de Indio (InAs/InP)” Universitat de València (2005).
  34. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]
  35. G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

2011 (1)

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

2010 (3)

S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
[CrossRef]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
[CrossRef] [PubMed]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010).
[CrossRef]

2009 (4)

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
[CrossRef]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

2008 (4)

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

G. Gayral and J. M. Gerard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[CrossRef]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

2006 (1)

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

2005 (4)

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

2003 (1)

2001 (3)

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

J. M. Gérard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

2000 (1)

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

1998 (3)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

1991 (1)

T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abstreiter, G.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Alen, B.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

Alén, B.

L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
[CrossRef]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

Amann, M.-C.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

Asano, T.

Atatüre, M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Atkinson, P.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

Atlasov, K. A.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Auffèves, A.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Baba, T.

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
[CrossRef]

Badolato, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Barrier, D.

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

Ben, T.

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

Bennett, A. J.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

Bianucci, P.

Bichler, M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Blondy, P.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Brault, J.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Calic, M.

Canet-Ferrer, J.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Cros, D.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Deichsel, E.

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Dotor, M. L.

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Dwir, B.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Finley, J. J.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Forchel, A.

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010).
[CrossRef]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

Fuster, D.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
[CrossRef]

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

Gallo, P.

Garcia, J. M.

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

García, J. M.

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

Garcia-Cristobal, A.

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

Gayral, B.

J. M. Gérard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Gayral, G.

G. Gayral and J. M. Gerard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[CrossRef]

Gendry, M.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Gerard, J. M.

G. Gayral and J. M. Gerard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[CrossRef]

Gérard, J. M.

J. M. Gérard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

Gérard, J.-M.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Gonzalez, L.

D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
[CrossRef]

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

Gonzalez, Y.

D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
[CrossRef]

González, L.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

González, M. U.

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

González, Y.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

Hamano, T.

T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Hofbauer, F.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Hu, E.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Iga, K.

T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
[CrossRef]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Kaniber, M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

Kapon, E.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Karlsson, K. F.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kim, G. H.

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

Kim, S. B.

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

Kim, S. H.

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

Kim, S. K.

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

Kita, S.

Koyama, F.

T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
[CrossRef]

Krenner, H. J.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Kress, A.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Kuszelewicz, R.

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

Laucht, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

Lee, Y. H.

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Lemaître, A.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Letartre, X.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Marsiglio, F.

Martínez, L. J.

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
[CrossRef]

Martinez Pastor, J. P.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

Martinez-Pastor, J.

D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
[CrossRef]

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

Martínez-Pastor, J.

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

Marty, O.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Marzin, J. Y.

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

Mazuelas, A.

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

Meldrum, A.

Metzger, H. T.

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

Meyer, R.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Molina, S. I.

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

Mosset, A.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Muñoz-Matutano, G.

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

Munsch, M.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Neumann, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

Noda, S.

Notomi, M.

Nozaki, K.

Park, H. Y.

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

Pelton, M.

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Piquet, O.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Poizat, J. P.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Ponce, A.

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

Postigo, P. A.

L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
[CrossRef]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

Pottier, P.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Priester, C.

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

Prieto, I.

L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
[CrossRef]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Reinecke, T. L.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

Reinelt, N.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Reitzenstein, S.

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010).
[CrossRef]

Ritchie, D. A.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

Rivera, T.

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

Rudra, A.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Ryu, H. Y.

Sagnes, I.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Schuelli, T.

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

Schuh, D.

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

Seassal, C.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Seidelin, S.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Semage, B.

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

Senellart, P.

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shields, A. J.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

Solomon, G. S.

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Strauf, S.

S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
[CrossRef]

Tanaka, Y.

Thierry-Mieg, V.

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Unitt, D. C.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

Viktorovitch, P.

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

Villas-Bôas, J. M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

B. Alén, J. Martinez-Pastor, A. Garcia-Cristobal, L. Gonzalez, and J. M. Garcia, “Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires,” Appl. Phys. Lett. 78(25), 4025–4027 (2001).
[CrossRef]

D. Fuster, M. U. González, L. González, Y. González, T. Ben, A. Ponce, S. I. Molina, and J. Martínez-Pastor, “Size control of InAs/InP(001) quantum wires by tailoring P/As exchange,” Appl. Phys. Lett. 85(8), 1424–1426 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of a microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27(6), 1347–1358 (1991).
[CrossRef]

J. Appl. Phys. (3)

J. Canet-Ferrer, G. Muñoz-Matutano, D. Fuster, B. Alen, Y. González, L. González, and J. P. Martinez Pastor, “Localization effects on recombination dynamics in InAs/InP self-assembled Quantum Wires emitting at 1.5μm,” J. Appl. Phys. 110, 103502 (2011).

C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, and O. Marty, “InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88(11), 6170–6174 (2000).
[CrossRef]

S. H. Kim, G. H. Kim, S. K. Kim, H. Y. Park, Y. H. Lee, and S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95(2), 411–416 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

L. J. Martínez, I. Prieto, B. Alén, and P. A. Postigo, “Fabrication of high quality factor photonic crystal microcavities in InAsP/InP membranes combining reactive ion beam etching and reactive etching,” J. Vac. Sci. Technol. B 27(4), 1801–1804 (2009).
[CrossRef]

Nat. Photonics (1)

S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
[CrossRef]

Nature (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (6)

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. J. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect,” Phys. Rev. B 72(3), 033318 (2005).
[CrossRef]

A. Mazuelas, L. González, J. M. García, Y. González, T. Schuelli, C. Priester, and H. T. Metzger, “Strain determination in MBE-grown InAs quantum wires on InP,” Phys. Rev. B 73(4), 045312 (2006).
[CrossRef]

D. Fuster, J. Martinez-Pastor, L. Gonzalez, and Y. Gonzalez, “Exciton recombination dynamics in InAs/InP self-assembled quantum wires,” Phys. Rev. B 71(20), 205329 (2005).
[CrossRef]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008).
[CrossRef]

G. Gayral and J. M. Gerard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008).
[CrossRef]

M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, and P. Senellart, “Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[CrossRef] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

B. Alén, D. Fuster, G. Muñoz-Matutano, J. Martínez-Pastor, Y. González, J. Canet-Ferrer, and L. González, “Exciton gas compression and metallic condensation in a single semiconductor quantum wire,” Phys. Rev. Lett. 101(6), 067405 (2008).
[CrossRef] [PubMed]

G. S. Solomon, M. Pelton, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 86, 1110–1113 (1998).

Physica E (3)

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, M. Bichler, D. Schuh, R. Meyer, G. Abstreiter, and J. J. Finley, “Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities,” Physica E 26(1-4), 351–355 (2005).
[CrossRef]

J. M. Gérard, B. Legrand, B. Gayral, E. Costard, B. Semage, R. Kuszelewicz, D. Barrier, V. Thierry-Mieg, T. Rivera, and J. Y. Marzin, “InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control,” Physica E 2(1-4), 804–808 (1998).
[CrossRef]

J. M. Gérard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

Science (1)

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Other (3)

B. Gayral, “Controling the spontaneous emission dynamics in semiconductor microcavities: an experimental approach, PhD thesis” Ann. Phys. Fr. 26, 1–133 (2001).

K. A. Atlasov, “Light control and microcavity lasers based on quantum wires integrated in photonic-crystal cavities,” Thesis in Ecole Polytechnique Fédérale de Lausanne, no. 4359 (2009).

D. Fuster, “Crecimiento y caracterización de hilos cuánticos de Arseniuro de Indio sobre substratos de Fosfuro de Indio (InAs/InP)” Universitat de València (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Atomic force microscopy image of an uncapped sample of self-assembled InAs/InP QWRs. (b) Photoluminescence spectra of the ensemble of QWRs for light linearly polarized along the [110] and [18,13,14] directions measured at 80 K out of the photonic crystal structure. (c) and (d) Scanning Electron Microscope (SEM) images of the microcavities fabricated with the linear L7 defect parallel [type (-)] and perpendicular [type( + )] to the longer axis of the QWRs [18,13,14].

Fig. 2
Fig. 2

(a) Photoluminescence spectra of a type(-) cavity at the polarization directions [110] (red) and [18,13,14] (blue), (b) Idem for a type( + ) cavity.

Fig. 3
Fig. 3

(a) μPL spectrum of a type(-) cavity. The decay times of the modes O1, O2 and O3 (blue crosses) and that of the QWRs emitting at the same wavelengths (red solid circles) are also depicted. (b) μTRPL transients measured at the mode O1 of the a type(-) cavity and at QWRs emitting at the same wavelength. (c) Decay time measured at the O1 mode of twelve different cavities of both type(-) (x scatter) and type( + ) ( + scatter). The red solid circles stand for the decay time of the QWRs emitting at the same wavelengths of the cavity modes. (d) Idem at the O2 mode of the same cavities.

Fig. 4
Fig. 4

Figure of merit of the Purcell factor as a funtion of Q for the three cases: narrow emitters (doted black line), broad emitters (dashed black line) and self-assembled QWRs at the lattice temperature of 80 K (red continuous line).

Fig. 5
Fig. 5

Distribution of QWRs in type(-) (a) and type( + ) (b) coupled to a L7-type PCM whose electromagnetic field distribution for mode O1 is depicted in (c). (d) and (e) represent two simulated distributions of QWRs leading to different values of <α*γ> (red and blue spectra represent the emission of a single QWR and the optical mode O1, respectively). (f) One hundred simulated values of <α*γ> for the optical mode O1.

Fig. 6
Fig. 6

(a)-(b) Calculated average values of the Purcell factor by using simulated values of <α*γ>, as explained in the text, for the case of type(-) and type( + ) cavities for mode O1; (c)-(d) idem for mode O2. The error bars stand for the dispersion in the simulated values of <α*γ> as was illustrated in Fig. 5 (f).

Tables (2)

Tables Icon

Table 1 SE enhancement of the type( + ) cavity modesa

Tables Icon

Table 2 SE enhancement of the type(-) cavity modesa

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

W C A V W 0 = 3 ( λ / n ) 3 4 π 2 V e f ω e Δ ω c + ω c Δ ω e 4 ( ω e ω c ) 2 + ( Δ ω e + Δ ω c ) 2 ξ 2
1 Q e f = 1 Q c + 1 Q e
W C A V W 0 = F p × Π × α
w i t h F p = 3 ( λ / n ) 3 Q e f 4 π 2 V e f
Π = ξ 2
a n d α = 1 Q e f ω e Δ ω c + ω c Δ ω e 4 ( ω e ω c ) 2 + ( Δ ω e + Δ ω c ) 2 ξ 2
W C A V W 0 = F p × Π × α × γ
γ Q D = | E ( r ) | 2 | E MAX | 2
γ = V | E ( r ) | 2 H ( r r e ) d r V | E ( r ) | 2 H ( r r 0 ) d r
γ Q D = S C A V H ( x x e , y y e ) d x d y S C A V H ( x x 0 , y y 0 ) d x d y = | E ( x e , y e ) | 2 | E MAX | 2
γ Q W R = S C A V | E ( x , y ) | 2 H ( x x e , y y e ) d x d y S C A V | E ( x , y ) | 2 H ( x x 0 , y y 0 ) d x d y = y e L y e + L | E ( x = x e , y ) | 2 d y y 0 L y 0 + L | E ( x = x 0 , y ) | 2 d y
W C A V W 0 = τ 0 τ C A V = i P i τ 0 τ C A V ( i ) i P i = F p × Π × i P i α i γ i i P i
P i I P L ( i ) W i C A V
P i W i C A V = W 0 × F p × Π × α i × γ i α i γ i
τ 0 τ C A V = F p Π i ( α i γ i ) 2 i ( α i γ i ) = F p Π α × γ
Γ ( T ) = Γ 0 + Γ A C T + Γ L O exp ( E L O / K T ) 1
Π = | P e m i t t e r × P m o d e | 2
P ( + ) = ( E x E y E z ) 1 E x 2 + E y 2 + E z 2 = ( 0 E y 0 ) 1 E y = ( 0 1 0 )
P ( ) = ( E x E y E z ) 1 E x 2 + E y 2 + E z 2 = ( E x 0 0 ) 1 E x = ( 1 0 0 )
P e m i t t e r = ( I P L + I P L I P L z ) 1 I P L + + I P L + I P L z = ( 1.47 2.45 1 ) 1 4.92

Metrics