Abstract

We compare by simulation the performance of 100Gbit/s PDM-iRZ-QPSK and PS-QPSK transmission both in homogeneous and hybrid QPSK/OOK DM links. We detail the reasons of the overall performance investigating each nonlinear effect (SPM, XPM and XPolM) individually. Moreover, we compare the accuracy of the noise loading method with the more realistic use of noisy in-line amplifiers. Results shows that i) PDM-iRZ-QPSK and PS-QPSK have same reach in both homogeneous and hybrid setups, ii) correct simulations must include distributed ASE.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  2. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [CrossRef]
  3. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  4. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. ECOC 2010, Torino, Italy, (2010). Paper Th.10.E.2.
  5. D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
    [CrossRef] [PubMed]
  6. C. Xie, “Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift- keying systems,” IEEE Photon. Technol. Lett. 21(5), 274–276 (2009).
    [CrossRef]
  7. O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).
  8. A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC-NFOEC 2011, Los Angeles, CA, (2011). Paper OWO7.
  9. P. Serena, M. Bertolini, and A. Vannucci, “Optilux toolbox,” (2009). [online] www.optilux.sourceforge.net .
  10. P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus Inter-channel PMD in Linearly Compensated Coherent PDM-PSK Nonlinear Transmissions,” J. Lightwave Technol. 29(11), 1691–1700 (2011).
    [CrossRef]
  11. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19(8), 7734–7741 (2011).
    [CrossRef] [PubMed]
  12. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]

2011

2010

2009

C. Xie, “Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift- keying systems,” IEEE Photon. Technol. Lett. 21(5), 274–276 (2009).
[CrossRef]

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
[CrossRef] [PubMed]

E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
[CrossRef]

1983

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Agrell, E.

Andrekson, P. A.

Bayvel, P.

Behrens, C.

Bertolini, M.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

P. Serena, M. Bertolini, and A. Vannucci, “Optilux toolbox,” (2009). [online] www.optilux.sourceforge.net .

Bertran-Pardo, O.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus Inter-channel PMD in Linearly Compensated Coherent PDM-PSK Nonlinear Transmissions,” J. Lightwave Technol. 29(11), 1691–1700 (2011).
[CrossRef]

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Bigo, S.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Bononi, A.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus Inter-channel PMD in Linearly Compensated Coherent PDM-PSK Nonlinear Transmissions,” J. Lightwave Technol. 29(11), 1691–1700 (2011).
[CrossRef]

A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC-NFOEC 2011, Los Angeles, CA, (2011). Paper OWO7.

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. ECOC 2010, Torino, Italy, (2010). Paper Th.10.E.2.

Bosco, G.

Carena, A.

Charlet, G.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Curri, V.

Forghieri, F.

Johannisson, P.

Karlsson, M.

Lavery, D.

Makovejs, S.

Mardoyan, H.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Millar, D. S.

Poggiolini, P.

Renaudier, J.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus Inter-channel PMD in Linearly Compensated Coherent PDM-PSK Nonlinear Transmissions,” J. Lightwave Technol. 29(11), 1691–1700 (2011).
[CrossRef]

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Rossi, N.

Salsi, M.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Savory, S. J.

Serena, P.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus Inter-channel PMD in Linearly Compensated Coherent PDM-PSK Nonlinear Transmissions,” J. Lightwave Technol. 29(11), 1691–1700 (2011).
[CrossRef]

A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC-NFOEC 2011, Los Angeles, CA, (2011). Paper OWO7.

P. Serena, M. Bertolini, and A. Vannucci, “Optilux toolbox,” (2009). [online] www.optilux.sourceforge.net .

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. ECOC 2010, Torino, Italy, (2010). Paper Th.10.E.2.

Sjödin, M.

Thomsen, B. C.

Tran, P.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Vannucci, A.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus Inter-channel PMD in Linearly Compensated Coherent PDM-PSK Nonlinear Transmissions,” J. Lightwave Technol. 29(11), 1691–1700 (2011).
[CrossRef]

P. Serena, M. Bertolini, and A. Vannucci, “Optilux toolbox,” (2009). [online] www.optilux.sourceforge.net .

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. ECOC 2010, Torino, Italy, (2010). Paper Th.10.E.2.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wymeersch, H.

Xie, C.

C. Xie, “Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift- keying systems,” IEEE Photon. Technol. Lett. 21(5), 274–276 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Xie, “Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift- keying systems,” IEEE Photon. Technol. Lett. 21(5), 274–276 (2009).
[CrossRef]

IEEE Trans. Inf. Theory

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Proc. IEEE Globecom

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, M. Bertolini, and S. Bigo, “Insertion of 100Gb/s coherent PDM-QPSK channels over legacy optical networks relying on low chromatic dispersion fibres,” in Proc. IEEE Globecom, (2009).

Other

A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC-NFOEC 2011, Los Angeles, CA, (2011). Paper OWO7.

P. Serena, M. Bertolini, and A. Vannucci, “Optilux toolbox,” (2009). [online] www.optilux.sourceforge.net .

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. ECOC 2010, Torino, Italy, (2010). Paper Th.10.E.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Left: Simulated N × 100 km, 112 Gbit/s DM30 link. Right: 19 channels spectra in the homogeneous (top) and hybrid (bottom) cases.

Fig. 2
Fig. 2

Power that yields Q-factor=8.5 dB vs. transmission distance for the given DM link with 30 ps/nm. Solid lines: distributed noise (NLPN). Dashed lines: End-link noise loading. Left: Homogeneous setup. Right: Hybrid setup.

Fig. 3
Fig. 3

Q-factor (with nonlinearity decoupling) vs power for (top row) homogeneous scheme, (bottom row) hybrid scheme, after 4000km of the DM map. WDM: SPM+XPM+XPolM. Solid lines: data interpolation.

Fig. 4
Fig. 4

Q-factor after 4000 km for Hybrid setup with polarization demultiplexer (PD)- (triangles) or 7-tap CMA (squares). While for the NRZ pulses of PS-QPSK CMA and PD give similar performance, for PDM-iRZ-QPSK the PD is strongly penalizing.

Fig. 5
Fig. 5

Simplified system model. LPF is the ADC filter.

Fig. 6
Fig. 6

iRZ electric current at the output of the LPFs for polarization X and Y. Dashed: LPF of infinite bandwidth. Solid: LPF of bandwidth 0.7R.

Fig. 7
Fig. 7

SOP over the Poincaré sphere without (left) and with (right) pulse interleaving of a PDM-QPSK signal after reception with PD. The SOP spreading with interleaving can be removed using either a larger bandwidth ADC or a CMA equalizer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ x 2 ( t k ) y 2 ( t k ) ] = [ M 11 0 0 M 22 ] [ x ( t ) h ( t ) | t k y ( t ) h ( t ) | t k ] + [ 0 M 12 M 21 0 ] [ x ( t + T 2 ) h ( t ) | t k y ( t T 2 ) h ( t ) | t k ] crosstalk
[ x 2 ( t k ) y 2 ( t k ) ] = [ M 11 M 12 M 21 M 22 ] [ x ( t ) h ( t ) | t k y ( t ) h ( t ) | t k ] .

Metrics