Abstract

We propose a promising scheme to realize the deceleration of a pulsed subsonic molecular beam by using a multistage optical Stark decelerator (i.e., a 1D quasi-cw traveling optical lattice), which is composed of two nearly counter-propagating, time-varying, red-detuned light fields with an intensity of ~107Wcm−2 and a fixed frequency difference between them. We also study the influence of the velocity reduced amount of the traveling lattice, the lattice power, the synchronous phase angle, the deceleration-stage number and the temporal profile of laser pulses on the molecular slowing results by using 3D Monte-Carlo method. Our study shows that the proposed decelerator cannot only be used to slow a pulsed subsonic beam from 240m/s to standstill, but also to obtain a cold molecular packet with a temperature of a few µK, and the corresponding fraction of cold molecules is 10−6-10−7, which strongly depends on the synchronous phase angle. And we also find that a pair of appropriate rising and falling times of laser pulses will lead to a better slowing effect than that produced by the top-hat temporal ones.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schlöder, C. Silber, and C. Zimmermann, “Photoassociation of heteronuclear lithium,” Appl. Phys. B 73(8), 801–805 (2001).
    [CrossRef]
  2. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
    [CrossRef] [PubMed]
  3. D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
    [CrossRef]
  4. M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
    [CrossRef] [PubMed]
  5. N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
    [CrossRef]
  6. R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
    [CrossRef]
  7. Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
    [CrossRef] [PubMed]
  8. B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
    [CrossRef]
  9. R. Liu, Q. Zhou, Y. Yin, and J. Yin, “Laser guiding of cold molecules in a hollow photonic bandgap fiber,” J. Opt. Soc. Am. B 26(5), 1076–1083 (2009).
    [CrossRef]
  10. E. S. Shuman, J. F. Barry, and D. Demille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
    [CrossRef] [PubMed]
  11. P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
    [CrossRef]
  12. P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66(6), 065402 (2002).
    [CrossRef]
  13. J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, “Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients,” Phys. Chem. Chem. Phys. 8(25), 2985–2989 (2006).
    [CrossRef] [PubMed]
  14. S. Kuma and T. Momose, “Deceleration of molecules by dipole force potential: a numerical simulation,” New J. Phys. 11(5), 055023 (2009).
    [CrossRef]
  15. Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, “Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice,” Opt. Express 17(13), 10706–10717 (2009).
    [CrossRef] [PubMed]
  16. R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
    [CrossRef]
  17. T. Takekoshi, J. R. Yeh, and R. J. Knize, “Quasi-electrostatic trap for neutral atoms,” Opt. Commun. 114(5-6), 421–424 (1995).
    [CrossRef]
  18. M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
    [CrossRef]
  19. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  20. D. C. Clary, “A theory for the photodissociation of polyatomic molecules, with application to CF3I,” J. Chem. Phys. 84(8), 4288–4298 (1986).
    [CrossRef]
  21. J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
    [CrossRef] [PubMed]
  22. J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430(1-2), 1–116 (2006).
    [CrossRef]

2010 (1)

E. S. Shuman, J. F. Barry, and D. Demille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Kuma and T. Momose, “Deceleration of molecules by dipole force potential: a numerical simulation,” New J. Phys. 11(5), 055023 (2009).
[CrossRef]

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

R. Liu, Q. Zhou, Y. Yin, and J. Yin, “Laser guiding of cold molecules in a hollow photonic bandgap fiber,” J. Opt. Soc. Am. B 26(5), 1076–1083 (2009).
[CrossRef]

Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, “Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice,” Opt. Express 17(13), 10706–10717 (2009).
[CrossRef] [PubMed]

2007 (3)

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

2006 (4)

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
[CrossRef]

J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, “Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients,” Phys. Chem. Chem. Phys. 8(25), 2985–2989 (2006).
[CrossRef] [PubMed]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
[CrossRef]

J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430(1-2), 1–116 (2006).
[CrossRef]

2004 (1)

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

2003 (2)

C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
[CrossRef] [PubMed]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

2002 (1)

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66(6), 065402 (2002).
[CrossRef]

2001 (2)

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

U. Schlöder, C. Silber, and C. Zimmermann, “Photoassociation of heteronuclear lithium,” Appl. Phys. B 73(8), 801–805 (2001).
[CrossRef]

1999 (1)

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

1998 (1)

D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
[CrossRef]

1995 (1)

T. Takekoshi, J. R. Yeh, and R. J. Knize, “Quasi-electrostatic trap for neutral atoms,” Opt. Commun. 114(5-6), 421–424 (1995).
[CrossRef]

1986 (1)

D. C. Clary, “A theory for the photodissociation of polyatomic molecules, with application to CF3I,” J. Chem. Phys. 84(8), 4288–4298 (1986).
[CrossRef]

Andrist, M.

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

Barker, P. F.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
[CrossRef]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
[CrossRef]

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66(6), 065402 (2002).
[CrossRef]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

Barry, J. F.

E. S. Shuman, J. F. Barry, and D. Demille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[CrossRef] [PubMed]

Bethlem, H. L.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Bishop, A. I.

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
[CrossRef]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
[CrossRef]

Bochinski, J. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

Bohn, J. L.

C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
[CrossRef] [PubMed]

Carnevali, F.

D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
[CrossRef]

Chandler, D. W.

J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, “Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients,” Phys. Chem. Chem. Phys. 8(25), 2985–2989 (2006).
[CrossRef] [PubMed]

Clary, D. C.

D. C. Clary, “A theory for the photodissociation of polyatomic molecules, with application to CF3I,” J. Chem. Phys. 84(8), 4288–4298 (1986).
[CrossRef]

Demille, D.

E. S. Shuman, J. F. Barry, and D. Demille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[CrossRef] [PubMed]

Deng, L.

Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, “Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice,” Opt. Express 17(13), 10706–10717 (2009).
[CrossRef] [PubMed]

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

Fulton, R.

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
[CrossRef]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
[CrossRef]

Gerton, J. M.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

Ghaffari, B.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

Gimelshein, S. F.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

Hemmati-Brivanlou, A.

D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hinds, E. A.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Homan, D. M.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hudson, E. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

Hudson, J. J.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Hulet, R. G.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Jin, D. S.

C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
[CrossRef] [PubMed]

Knize, R. J.

T. Takekoshi, J. R. Yeh, and R. J. Knize, “Quasi-electrostatic trap for neutral atoms,” Opt. Commun. 114(5-6), 421–424 (1995).
[CrossRef]

Kuma, S.

S. Kuma and T. Momose, “Deceleration of molecules by dipole force potential: a numerical simulation,” New J. Phys. 11(5), 055023 (2009).
[CrossRef]

Lewandowski, H. J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

Liu, R.

Liu, Y.

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

Marden, J.

D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
[CrossRef]

McAlexander, W. I.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

Meier, B. H.

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

Meier, U.

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

Meijer, G.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

Merkt, F.

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

Momose, T.

S. Kuma and T. Momose, “Deceleration of molecules by dipole force potential: a numerical simulation,” New J. Phys. 11(5), 055023 (2009).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Ramirez-Serrano, J.

J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, “Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients,” Phys. Chem. Chem. Phys. 8(25), 2985–2989 (2006).
[CrossRef] [PubMed]

Regal, C. A.

C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
[CrossRef] [PubMed]

Ryabov, V. L.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Ryzhov, V. A.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Sauer, B. E.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Schlöder, U.

U. Schlöder, C. Silber, and C. Zimmermann, “Photoassociation of heteronuclear lithium,” Appl. Phys. B 73(8), 801–805 (2001).
[CrossRef]

Shneider, M. N.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
[CrossRef]

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
[CrossRef]

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66(6), 065402 (2002).
[CrossRef]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

Shuman, E. S.

E. S. Shuman, J. F. Barry, and D. Demille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[CrossRef] [PubMed]

Silber, C.

U. Schlöder, C. Silber, and C. Zimmermann, “Photoassociation of heteronuclear lithium,” Appl. Phys. B 73(8), 801–805 (2001).
[CrossRef]

Strecker, K. E.

J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, “Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients,” Phys. Chem. Chem. Phys. 8(25), 2985–2989 (2006).
[CrossRef] [PubMed]

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

Takekoshi, T.

T. Takekoshi, J. R. Yeh, and R. J. Knize, “Quasi-electrostatic trap for neutral atoms,” Opt. Commun. 114(5-6), 421–424 (1995).
[CrossRef]

Tarbutt, M. R.

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Ticknor, C.

C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
[CrossRef] [PubMed]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Vanhaecke, N.

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

Weinstein, D. C.

D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
[CrossRef]

Xia, Y.

Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, “Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice,” Opt. Express 17(13), 10706–10717 (2009).
[CrossRef] [PubMed]

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

Ye, J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

Yeh, J. R.

T. Takekoshi, J. R. Yeh, and R. J. Knize, “Quasi-electrostatic trap for neutral atoms,” Opt. Commun. 114(5-6), 421–424 (1995).
[CrossRef]

Yin, J.

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, “Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice,” Opt. Express 17(13), 10706–10717 (2009).
[CrossRef] [PubMed]

R. Liu, Q. Zhou, Y. Yin, and J. Yin, “Laser guiding of cold molecules in a hollow photonic bandgap fiber,” J. Opt. Soc. Am. B 26(5), 1076–1083 (2009).
[CrossRef]

J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430(1-2), 1–116 (2006).
[CrossRef]

Yin, Y.

Yun, M.

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

Zhou, Q.

Zimmermann, C.

U. Schlöder, C. Silber, and C. Zimmermann, “Photoassociation of heteronuclear lithium,” Appl. Phys. B 73(8), 801–805 (2001).
[CrossRef]

Appl. Phys. B (1)

U. Schlöder, C. Silber, and C. Zimmermann, “Photoassociation of heteronuclear lithium,” Appl. Phys. B 73(8), 801–805 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

J. Chem. Phys. (1)

D. C. Clary, “A theory for the photodissociation of polyatomic molecules, with application to CF3I,” J. Chem. Phys. 84(8), 4288–4298 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices,” J. Phys. At. Mol. Opt. Phys. 39(19), S1097–S1109 (2006).
[CrossRef]

Nat. Phys. (1)

R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, “Controlling the motion of cold molecules with deep periodic optical potentials,” Nat. Phys. 2(7), 465–468 (2006).
[CrossRef]

Nature (3)

E. S. Shuman, J. F. Barry, and D. Demille, “Laser cooling of a diatomic molecule,” Nature 467(7317), 820–823 (2010).
[CrossRef] [PubMed]

C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold molecules from a Fermi gas of atoms,” Nature 424(6944), 47–50 (2003).
[CrossRef] [PubMed]

D. C. Weinstein, J. Marden, F. Carnevali, and A. Hemmati-Brivanlou, “Magnetic trapping of calcium monohydride molecules at millikelvin temperatures,” Nature 395(6705), 148–150 (1998).
[CrossRef]

New J. Phys. (1)

S. Kuma and T. Momose, “Deceleration of molecules by dipole force potential: a numerical simulation,” New J. Phys. 11(5), 055023 (2009).
[CrossRef]

Opt. Commun. (1)

T. Takekoshi, J. R. Yeh, and R. J. Knize, “Quasi-electrostatic trap for neutral atoms,” Opt. Commun. 114(5-6), 421–424 (1995).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (2)

J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, “Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients,” Phys. Chem. Chem. Phys. 8(25), 2985–2989 (2006).
[CrossRef] [PubMed]

Y. Liu, M. Yun, Y. Xia, L. Deng, and J. Yin, “Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering,” Phys. Chem. Chem. Phys. 12(3), 745–752 (2009).
[CrossRef] [PubMed]

Phys. Rep. (1)

J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430(1-2), 1–116 (2006).
[CrossRef]

Phys. Rev. A (4)

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, “Laser-free slow atom source,” Phys. Rev. A 60(5), 3878–3881 (1999).
[CrossRef]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66(6), 065402 (2002).
[CrossRef]

N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, “Multistage Zeeman deceleration of hydrogen atoms,” Phys. Rev. A 75(3), 031402 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91(24), 243001 (2003).
[CrossRef] [PubMed]

M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, “Slowing heavy, ground-state molecules using an alternating gradient decelerator,” Phys. Rev. Lett. 92(17), 173002 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of a multistage optical Stark decelerator using a quasi-cw traveling optical lattice, which is created by two nearly counter-propagating, far-off-resonance, red-detuned laser beams with a fixed frequency difference between them, and the lattice moves along the z axis. A pulsed subsonic molecular beam propagates along the z axis and enters the quasi-cw moving lattice. The inset figure is the enlarged optical lattice. (b) The time-sequence control of moving lattice velocity for vm0 = 240m/s, ϕ0 = 90° and 120°.

Fig. 2
Fig. 2

Simulated longitudinal velocity distributions of CH4 molecules at the outlet of the decelerator for the synchronous phase angle (a) ϕ0 = 90° and (b) ϕ0 = 120°. Other simulated parameters are given in the plots and text.

Fig. 3
Fig. 3

Dependences of (a) the final central velocity, (b) fraction and (c) temperature of the slowest packet (i.e., the slowed packet 3 in Fig. 2) on the deceleration stage number m. Other simulated parameters are given in the plots and text.

Fig. 4
Fig. 4

Dependences of the deceleration stage number m that needs to slow a subsonic CH4 molecular beam to zero on (a) the velocity reduced amount Δvlatt of the traveling lattice, (b) the synchronous phase angle ϕ0, and (c) the input power P0 of lattice beams. Other simulated parameters are given in the plots and text.

Fig. 5
Fig. 5

Influence of the rising and falling times of laser pulses (tr and tf) on (a) final most-probable velocity vl (where lines are fitted curves and points are simulated results), (c) fraction n of cold molecules in slowed packet and temperature Tl of it. Variation of (b) turning point of tr (and tf) with the synchronous phase angle ϕ0 and (d) optical dipole force experienced by molecules on the z axis in one spatial period of traveling lattice. Other simulated parameters are given in the plots and text.

Fig. 6
Fig. 6

Simulated final central velocities of slowed CH4 molecular packets decelerated by a static or traveling optical lattice, respectively. Other simulated parameters are given in the plots and text.

Fig. 7
Fig. 7

Comparison of the deceleration effects of (a) our traveling lattice with (b) a chirped optical lattice. Other simulated parameters are shown in the plots and text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U ( z , t ) = 1 2 α E ( z , t ) 2
E ( z , t ) 2 = E 1 ( t ) E 2 ( t ) cos ( q z q v latt0 t δ t 2 )
U ( z , t ) = 2 α ε 0 c I 1 I 2 cos 2 [ 1 2 ( k z Δ ω t ) ]

Metrics