Abstract

Stable optical trapping and manipulation of high-index particles in low-index host media is often impossible due to the dominance of scattering forces over gradient forces. Here we explore optical manipulation in liquid crystalline structured hosts and show that robust optical manipulation of high-index particles, such as GaN nanowires, is enabled by laser-induced distortions in long-range molecular alignment, via coupling of translational and rotational motions due to helicoidal molecular arrangement, or due to elastic repulsive interactions with confining substrates. Anisotropy of the viscoelastic liquid crystal medium and particle shape give rise to a number of robust unconventional trapping capabilities, which we use to characterize defect structures and study rheological properties of various thermotropic liquid crystals.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  2. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  5. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [CrossRef]
  6. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [CrossRef]
  7. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999).
    [CrossRef] [PubMed]
  8. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
    [CrossRef] [PubMed]
  9. H. Ukita and K. Nagatomi, “Theoretical demonstration of a newly designed micro-rotator driven by optical pressure on a eight incident surface,” Opt. Rev. 4(4), 447–449 (1997).
    [CrossRef]
  10. D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
    [CrossRef]
  11. S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27(6), 1255–1264 (2010).
    [CrossRef] [PubMed]
  12. S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A 28(5), 850–858 (2011).
    [CrossRef] [PubMed]
  13. C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
    [CrossRef] [PubMed]
  14. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [CrossRef]
  15. D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
    [CrossRef]
  16. R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
    [CrossRef]
  17. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
    [CrossRef]
  18. Certain commercial materials are identified in this paper only to specify experimental procedures. Such identification implies neither recommendation or endorsement by the National Institute of Standards and Technology, nor that materials identified are necessarily the best available for the purpose.
  19. B.-W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
    [CrossRef] [PubMed]
  20. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
    [CrossRef]
  21. V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011).
    [CrossRef]
  22. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
    [CrossRef]
  23. V. M. Pergamenshchik and V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 021704 (2009).
    [CrossRef] [PubMed]
  24. A. Ortega and J. G. de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119(18), 9914–9919 (2003).
    [CrossRef]
  25. C. J. Smith and C. Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
    [CrossRef]
  26. R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
    [CrossRef] [PubMed]
  27. Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, and I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011).
    [CrossRef] [PubMed]
  28. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
    [CrossRef] [PubMed]

2011 (8)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A 28(5), 850–858 (2011).
[CrossRef] [PubMed]

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011).
[CrossRef]

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, and I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

V. M. Pergamenshchik and V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 021704 (2009).
[CrossRef] [PubMed]

2007 (2)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

C. J. Smith and C. Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

2006 (3)

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

2003 (3)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).

A. Ortega and J. G. de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119(18), 9914–9919 (2003).
[CrossRef]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

2001 (2)

B.-W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

1999 (1)

1997 (1)

H. Ukita and K. Nagatomi, “Theoretical demonstration of a newly designed micro-rotator driven by optical pressure on a eight incident surface,” Opt. Rev. 4(4), 447–449 (1997).
[CrossRef]

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

1986 (1)

Asavei, T.

Ashkin, A.

Ashman, M.

Barker, J. M.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Bayoudh, S.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).

Bertness, K. A.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Bolognesi, G.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

Bowman, R.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Cammarota, E.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

Carberry, D. M.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Chu, S.

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Clark, N. A.

B.-W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Davydov, A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

de la Torre, J. G.

A. Ortega and J. G. de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119(18), 9914–9919 (2003).
[CrossRef]

Denniston, C.

C. J. Smith and C. Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Di Leonardo, R.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

Dickinson, M.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Dziedzic, J. M.

Engström, D.

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Gauthier, R. C.

Gibson, G. M.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Gibson, U. J.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Gleeson, H. F.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Goksör, M.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Grover, C. P.

Hanna, S.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A 28(5), 850–858 (2011).
[CrossRef] [PubMed]

S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27(6), 1255–1264 (2010).
[CrossRef] [PubMed]

He, S.

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).

Higurashi, E.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Lapointe, C. P.

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

Lavrentovich, O. D.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Lee, B.-W.

B.-W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

Lee, T.

Liu, Q.

Loke, V. L. Y.

V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Mason, T. G.

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

Mengüç, M. P.

V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011).
[CrossRef]

Miles, M. J.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Nagatomi, K.

H. Ukita and K. Nagatomi, “Theoretical demonstration of a newly designed micro-rotator driven by optical pressure on a eight incident surface,” Opt. Rev. 4(4), 447–449 (1997).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Nieminen, T. A.

V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Ortega, A.

A. Ortega and J. G. de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119(18), 9914–9919 (2003).
[CrossRef]

Padgett, M. J.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Pergamenshchik, V. M.

V. M. Pergamenshchik and V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 021704 (2009).
[CrossRef] [PubMed]

Persson, M.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Phillips, D. B.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Roshko, A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Rubinsztein-Dunlop, H.

Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, and I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).

Sanford, N. A.

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

Schäfer, H.

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

Shiyanovskii, S. V.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Simpson, S. H.

S. H. Simpson and S. Hanna, “Optical trapping of microrods: variation with size and refractive index,” J. Opt. Soc. Am. A 28(5), 850–858 (2011).
[CrossRef] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27(6), 1255–1264 (2010).
[CrossRef] [PubMed]

Singer, W.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Smalyukh, I. I.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

Q. Liu, T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, and I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011).
[CrossRef] [PubMed]

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Smith, C. J.

C. J. Smith and C. Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

Steinhart, M.

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Trivedi, R. P.

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Ukita, H.

H. Ukita and K. Nagatomi, “Theoretical demonstration of a newly designed micro-rotator driven by optical pressure on a eight incident surface,” Opt. Rev. 4(4), 447–449 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Uzunova, V. A.

V. M. Pergamenshchik and V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 021704 (2009).
[CrossRef] [PubMed]

Wood, T. A.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

J. Appl. Phys. (1)

C. J. Smith and C. Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

J. Chem. Phys. (1)

A. Ortega and J. G. de la Torre, “Hydrodynamic properties of rodlike and disklike particles in dilute solution,” J. Chem. Phys. 119(18), 9914–9919 (2003).
[CrossRef]

J. Cryst. Growth (1)

K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. Davydov, “Spontaneously grown GaN and AlGaN nanowires,” J. Cryst. Growth 287(2), 522–527 (2006).
[CrossRef]

J. Mod. Opt. (1)

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581 (2003).

J. Opt. (2)

D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt. 13(4), 044023 (2011).
[CrossRef]

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Radiat. Transf. (1)

V. L. Y. Loke, M. P. Mengüç, and T. A. Nieminen, “Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1711–1725 (2011).
[CrossRef]

Nat. Photonics (1)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

H. Ukita and K. Nagatomi, “Theoretical demonstration of a newly designed micro-rotator driven by optical pressure on a eight incident surface,” Opt. Rev. 4(4), 447–449 (1997).
[CrossRef]

Philos. Transact. A Math. Phys. Eng. Sci. (1)

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

V. M. Pergamenshchik and V. A. Uzunova, “Colloid-wall interaction in a nematic liquid crystal: the mirror-image method of colloidal nematostatics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 021704 (2009).
[CrossRef] [PubMed]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Di Leonardo, E. Cammarota, G. Bolognesi, H. Schäfer, and M. Steinhart, “Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods,” Phys. Rev. Lett. 107(4), 044501 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Science (2)

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

B.-W. Lee and N. A. Clark, “Alignment of liquid crystals with patterned isotropic surfaces,” Science 291(5513), 2576–2580 (2001).
[CrossRef] [PubMed]

Soft Matter (1)

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Other (1)

Certain commercial materials are identified in this paper only to specify experimental procedures. Such identification implies neither recommendation or endorsement by the National Institute of Standards and Technology, nor that materials identified are necessarily the best available for the purpose.

Supplementary Material (6)

» Media 1: AVI (2707 KB)     
» Media 2: AVI (1289 KB)     
» Media 3: AVI (2138 KB)     
» Media 4: AVI (1154 KB)     
» Media 5: AVI (2138 KB)     
» Media 6: AVI (1134 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Integrated HOT and FCPM setup. The HOT part of the setup is composed of a laser (λ = 1064 nm), plano-convex lenses L1 (focal length 100 mm), L2 (250 mm), L3 (850 mm), and L4 (400 mm) with anti-reflection coating, a Glan-Laser polarizer (P), a half-wave plate (HWP), a dichroic mirror (DM), a polarization rotator (PR), and a microscope objective (MO). The FCPM consists of an excitation laser, a dichroic filter (F), a beam-splitting cube (C), a pinhole, and a photomultiplier tube (PMT). The setup also allows for POM imaging.

Fig. 2
Fig. 2

Nanowires in NLCs. (a) and (b) SEM micrographs of (a) the side-view and (b) cross-sections of GaN nanowires. (c) Schematic of (N)(r) around a hexagonal facetted nanowire in an aligned NLC. (d) Micrograph and (e) schematic of (N)(r) around a nanowire in an aligned NLC. (f) Micrograph and (g) schematic of (N)(r) around a nanowire under the influence of a laser trap (light is propagating in the positive z-direction) centered at one of nanowire ends. The dotted lines in (e) and (g) indicates the image plane used to capture the micrographs shown in (d) and (f).

Fig. 3
Fig. 3

Manipulation of a GaN nanowire in an NLC using high-power laser traps. (a) Nanowire manipulated by a single trap positioned at its left end (Media 1): at elapsed time t1 = 5.0 s, the trap starts moving with a constant velocity. The inset shows a frame from the movie; N0 is along the x-axis. (b) Nanowire manipulated using two traps, one at each of its ends (Media 2): at elapsed time t1 = 2.1 s, the left trap starts moving with a constant velocity while the right-end trap is immobile. At elapsed time t2 = 7.0 s, the right end of the nanowire escapes its trap due to the elastic torque exerted by the NLC. Inset shows a frame from Media 2 at elapsed time 7.0 s; N0 is along the x-axis. In (a) and (b) graphs show nanowire's left end position ynw and rotation angle βnw vs. time. The black solid line in (b) is obtained by the use of the model and parameters K = 13 × 10−12 N, η = 0.45 P, Lnw = 10 μm, and Rnw = 150 nm. The cell gap is 60 µm.

Fig. 4
Fig. 4

Manipulation of GaN nanowires in a CLC. (a) Schematic of an equilibrium director structure in a CLC cell with pitch p. (b)–(e) Frames from Media 3, in which a single focused optical beam, initially positioned on the center of a nanowire, forces the nanowire to rotate away from the microscope objective. The optical beam is then blocked, refocused, and unblocked at elapsed times of unblocking 4.5 s and 35.0 s. (f) Nanowire in-plane angle βnw and z-position znw vs. time as extracted from Media 3; Frames shown in (b)–(e) correspond to elapsed times indicated with red circles in (f). (g) Measured nanowire position znw as a function of the in-plane rotation angle βnw. The cell gap is 60 µm. A laser beam power of 50 mW at the sample plane was used in these experiments.

Fig. 5
Fig. 5

GaN nanowire translated within and around an oily streak in a CLC. (a) FCPM vertical cross-section of the sample with an oily streak. (b) Schematic of the director structure around the defect with the nanowire translation trajectory (red line); the three rotated screws each indicate a 180° clock-wise rotation of the nanowire. (c) Frames from Media 4 (sped up 2 times), Media 5 (sped up 2 times), and Media 6 (sped up 4 times) showing the nanowire being moved from position #1 to #2 in (d), the dislocation prohibiting the nanowire from moving across one of the broken layers, position #5 in (d), and the nanowire being pushed between positions #8 to #9 in (d), respectively. (d) Layered structure obtained using FCPM images shown with co-located nanowire positions measured using either in-plane FCPM images (red circles) or video microscopy frames (blue squares).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β ( t ) = c 1 e γ t ,
γ = 4 3 K η L 2 ln ( 2 L R ) ( L 2 6 R 2 ) 1 3 ,

Metrics