C. Li, Y. S. Zhou, and H. Y. Wang, “Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis,” Eur. Phys. J. D 66, 8 (2012).
[Crossref]
X. L. Zhong, Z. Y. Li, C. Wang, and Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011).
[Crossref]
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011).
[Crossref]
[PubMed]
E. P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal-insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28, 2159–2164 (2011).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
G. Y. Li, L. Cai, F. Xiao, Y. J. Pei, and A. S. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010).
[Crossref]
[PubMed]
Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[Crossref]
[PubMed]
L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[Crossref]
[PubMed]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010).
[Crossref]
B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[Crossref]
Z. W. Kang, W. H. Lin, and G. P. Wang, “Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices,” J. Opt. Soc. Am. B 26, 1944–1945 (2009).
[Crossref]
J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[Crossref]
[PubMed]
A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[Crossref]
[PubMed]
J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
[Crossref]
[PubMed]
T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]
Y. S. Zhou, B. Y. Gu, S. Lan, and L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008).
[Crossref]
Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]
A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[Crossref]
[PubMed]
L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[Crossref]
Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[Crossref]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010).
[Crossref]
Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]
D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010).
[Crossref]
R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, S. Lan, and L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008).
[Crossref]
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[Crossref]
Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]
Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]
Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[Crossref]
B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press1995).
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
Y. S. Zhou, B. Y. Gu, S. Lan, and L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008).
[Crossref]
D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010).
[Crossref]
C. Li, Y. S. Zhou, and H. Y. Wang, “Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis,” Eur. Phys. J. D 66, 8 (2012).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011).
[Crossref]
[PubMed]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
X. L. Zhong, Z. Y. Li, C. Wang, and Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011).
[Crossref]
Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[Crossref]
Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[Crossref]
Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[Crossref]
Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[Crossref]
[PubMed]
Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[Crossref]
[PubMed]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press1995).
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
X. L. Zhong, Z. Y. Li, C. Wang, and Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011).
[Crossref]
[PubMed]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
C. Li, Y. S. Zhou, and H. Y. Wang, “Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis,” Eur. Phys. J. D 66, 8 (2012).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011).
[Crossref]
[PubMed]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press1995).
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
Y. S. Zhou, B. Y. Gu, S. Lan, and L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008).
[Crossref]
X. L. Zhong, Z. Y. Li, C. Wang, and Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011).
[Crossref]
C. Li, Y. S. Zhou, and H. Y. Wang, “Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis,” Eur. Phys. J. D 66, 8 (2012).
[Crossref]
X. L. Zhong, Z. Y. Li, C. Wang, and Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011).
[Crossref]
[PubMed]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, S. Lan, and L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008).
[Crossref]
B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009).
[Crossref]
C. Li, Y. S. Zhou, and H. Y. Wang, “Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis,” Eur. Phys. J. D 66, 8 (2012).
[Crossref]
Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]
X. L. Zhong, Z. Y. Li, C. Wang, and Y. S. Zhou, “Analytical single-mode model for subwavelength metallic Bragg waveguides,” J. Appl. Phys. 109, 093115 (2011).
[Crossref]
D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010).
[Crossref]
Z. W. Kang, W. H. Lin, and G. P. Wang, “Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices,” J. Opt. Soc. Am. B 26, 1944–1945 (2009).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
E. P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal-insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28, 2159–2164 (2011).
[Crossref]
T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[Crossref]
J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[Crossref]
[PubMed]
G. Y. Li, L. Cai, F. Xiao, Y. J. Pei, and A. S. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010).
[Crossref]
[PubMed]
Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[Crossref]
[PubMed]
A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[Crossref]
[PubMed]
A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[Crossref]
[PubMed]
J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
[Crossref]
[PubMed]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Investigation of the wave behaviors inside a step-modulated subwavelength metal slit,” Opt. Express 19, 10073–10087 (2011).
[Crossref]
[PubMed]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[Crossref]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
Y. S. Zhou, B. Y. Gu, S. Lan, and L. M. Zhao, “Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission,” Phys. Rev. B 78, 081404 (2008).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]
[PubMed]
Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L. J. Wu, “Impedance matching induce high transmissionand flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press1995).
K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).