Abstract

This paper proposes a chirp-free optical return-to-zero (RZ) modulator using a double coupled microring resonator. Optical RZ modulation is achieved by applying a clock (CLK) driving signal to the input coupling region and a non-return-to-zero (NRZ) driving signal to the output coupling region. Static and time-domain coupled-mode theory (CMT) based dynamic analyse are performed to theoretically investigate its performance in RZ modulation. The criteria to realize RZ modulation are deduced. Various RZ modulation formats, including RZ phase-shift-keying (RZ-PSK), carrier-suppressed RZ (CSRZ), and RZ intensity modulation formats, can be implemented by using CLK and NRZ signals with different combinations of polarities. Numerical simulations are performed and the feasibility of our modulator at 10 Gbit/s for the multiple RZ modulation formats is verified.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94, 952–985 (2006).
    [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef] [PubMed]
  3. S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.
  4. W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.
  5. K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.
  6. L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.
  7. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
    [CrossRef]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  9. L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
    [CrossRef]
  10. H. A. Haus, Waves and fields in optoelectronics (Prentice-HallEnglewood Cliffs, 1985).
  11. H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
    [CrossRef]
  12. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
    [CrossRef] [PubMed]
  13. C. Angulo Barrios, V. R. Almeida, R. Panepucci, M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” J. Lightwave Technol. 21, 2332– (2003).
    [CrossRef]
  14. L. Ghisa, Y. Dumeige, N. N. T. Kim, Y. G. Boucher, P. Feron, “Performances of a fully integrated all-optical pulse reshaper based on cascaded coupled nonlinear microring resonators,” J. Lightwave Technol. 25, 2417–2426 (2007).
    [CrossRef]

2011

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

2010

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

2007

2006

P. J. Winzer, R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94, 952–985 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

2003

2002

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[CrossRef]

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Almeida, V. R.

Angulo Barrios, C.

Assefa, S.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Baehr-Jones, T.

Barwicz, T.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Beausoleil, R. G.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.

Bergman, K.

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

Boucher, Y. G.

Bovington, J.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Bowers, J. E.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Chen, H.-W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Dalton, L.

Dumeige, Y.

Essiambre, R. J.

P. J. Winzer, R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94, 952–985 (2006).
[CrossRef]

Fang, A. W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Feron, P.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Ghisa, L.

Green, W. M.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

H. A. Haus, Waves and fields in optoelectronics (Prentice-HallEnglewood Cliffs, 1985).

Hochberg, M.

Huang, J.

Jacob-Mitos, M.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Jones, R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Kim, N. N. T.

Koch, B. R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Li, Y.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.

Liang, D.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Liao, L.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

C. Angulo Barrios, V. R. Almeida, R. Panepucci, M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” J. Lightwave Technol. 21, 2332– (2003).
[CrossRef]

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Manipatruni, S.

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

Ophir, N.

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

Padmaraju, K.

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

Panepucci, R.

Park, H.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Poitras, C. B.

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

Poon, J.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Qianfan, X.

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.

Sacher, W. D.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.

Shakya, J.

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.

Shank, S. M.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Song, M.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

Sullivan, P.

Sysak, M. N.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Tang, Y.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Vlasov, Y. A.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

Wang, G.

Willner, A. E.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.

Winzer, P. J.

P. J. Winzer, R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94, 952–985 (2006).
[CrossRef]

Wong, K.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Yang, J.

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.

Yang, J.-Y.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[CrossRef]

Zhang, L.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.

IEEE J. Sel. Top. Quantum Electron.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16, 149–158 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[CrossRef]

IEEE Sel. Top. Quantum Electron.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE Sel. Top. Quantum Electron. 17, 671–688 (2011).
[CrossRef]

J. Lightwave Technol.

Nature

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Proc. IEEE

P. J. Winzer, R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94, 952–985 (2006).
[CrossRef]

Other

S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), 537–538.

W. D. Sacher, W. M. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, J. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in CLEO:2011 - Laser Applications to Photonic Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

K. Padmaraju, N. Ophir, S. Manipatruni, C. B. Poitras, M. Lipson, K. Bergman, “DPSK modulation using a microring modulator,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN4.

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, A. E. Willner, “Creating RZ data modulation formats using parallel silicon microring modulators for pulse carving in DPSK,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN4.

H. A. Haus, Waves and fields in optoelectronics (Prentice-HallEnglewood Cliffs, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of a coupling modulated microring resonator for (a) the general case and (b) two MZI couplers.

Fig. 2
Fig. 2

OMA changes with signal frequency. (a) m b 1 = m1 = 10−4, m b 2 = m2 = 10−3 and ω2 = 0 (b) m b 1 = m1 = 10−3, m b 2 = m2 = 10−4 and ω1 = 0.

Fig. 3
Fig. 3

(a) Signal application schemes for the proposed modulator. (b)–(d) Illustration of the advanced phase-shift of the CLK signal for (b) RZ-PSK, (c) CSRZ, and (d) pure RZ intensity modulations.

Fig. 4
Fig. 4

(a) 10 GHz CLK driving signal and (b) 10 Gb/s NRZ driving signal for the RZ-PSK modulation. (c) Optical output signal when the CLK signal is phase-shifted in advance. (d) Optical output signal when there is no phase shift for the CLK signal. Insets in (c) and (d) show the output optical signal eye diagrams.

Fig. 5
Fig. 5

Output power and CR change as a function of Δn2 when the NRZ signal amplitude is varied.

Fig. 6
Fig. 6

Output optical signal power and phase for the CSRZ modulation at 10-Gb/s. Inset shows the optical signal eye diagram.

Fig. 7
Fig. 7

Output optical signal power and phase for the RZ-intensity modulation at 10-Gb/s with the ring waveguide losses of (a) α = 21 dB/cm and (b) α = 45 dB/cm. Insets show the optical signal eye diagrams.

Fig. 8
Fig. 8

Output modulated signals when input wavelength deviates from resonance by 0.01 nm for (a) RZ-PSK, (b) CSRZ, and (c) RZ-intensity modulations. Insets show the corresponding eye-diagrams of the modulated signals.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

M i = e j θ i ( t i j k i j k i t i ) ,
T drop = k 1 k 2 a 1 e j ( θ 1 + θ 2 + φ 1 ) 1 t 1 t 2 a 1 a 2 e j ( θ 1 + θ 2 + φ 1 + φ 2 ) .
T drop = k 1 k 2 a 1 e j φ 2 1 t 1 t 2 a 1 a 2 .
T drop a 1 e j φ 2 1 a 1 a 2 k 1 k 2 .
d a ( t ) d t = ( j ω 0 1 τ l 1 τ e 1 τ d ) a ( t ) j v g L k 1 e j ω 0 t
s d = j v g L k 2 a .
k i ( t ) = sin [ ( m b i + m i cos ω i t ) β L e / n ] k b i + r b i cos ω i t , i = 1 , 2
s d ( t ) v g L [ k b 1 k b 2 Ω + k b 2 r b 1 ω 1 2 + Ω 2 cos ( ω 1 t ϕ 1 ) + k b 1 r b 2 Ω cos ( ω 2 t ) ] + v g 2 L 2 k b 1 k b 2 Ω [ i = 1 2 k b i r b i ω i 2 + Ω 2 cos ( ω i t ϕ i ) ]
s d ( t ) v g L k 1 ( t ϕ 1 / ω 1 ) k 2 ( t ) Ω .
OMA = f ( t ) max f ( t ) min 2 ,
OMA = v g L | k b 2 r b 1 Ω 2 k b 1 2 v g 2 L Ω ω 1 2 + Ω 2 | + v g L [ ( k b 1 r b 2 Ω ) 2 + ( v g 2 L ( 2 k b 1 k b 2 r b 2 ) 2 k b 2 2 v g 2 L Ω Ω 2 ( ω 2 2 + Ω 2 ) ) ] 1 / 2 .
OMA | ω 2 = 0 = v g L | k b 2 r b 1 Ω 2 k b 1 2 v g 2 L Ω ω 1 2 + Ω 2 | .
OMA | ω 1 = 0 = v g L [ ( k b 1 r b 2 Ω ) 2 + ( v g 2 L ( 2 k b 1 k b 2 r b 2 ) 2 k b 2 2 v g 2 L Ω Ω 2 ( ω 2 2 + Ω 2 ) ) ] 1 / 2 .

Metrics