Abstract

Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water’s surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
  2. E. J. Kwiatkowska, B. A. Franz, G. Meister, C. R. McClain, X. X. Xiong, “Cross calibration of ocean-color bands from moderate resolution imaging spectroradiometer on Terra platform,” Appl. Opt. 47(36), 6796–6810 (2008).
    [CrossRef] [PubMed]
  3. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20(24), 4175–4180 (1981).
    [CrossRef] [PubMed]
  4. T. Hirata, N. Hardman-Mountford, J. Aiken, J. Fishwick, “Relationship between the distribution function of ocean nadir radiance and inherent optical properties for oceanic waters,” Appl. Opt. 48(17), 3129–3138 (2009).
    [CrossRef] [PubMed]
  5. H. Loisel, A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
    [CrossRef]
  6. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30(30), 4427–4438 (1991).
    [CrossRef] [PubMed]
  7. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional Aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
    [CrossRef] [PubMed]
  8. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [CrossRef] [PubMed]
  9. A. Morel, D. Antoine, B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
    [CrossRef] [PubMed]
  10. Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50(19), 3155–3167 (2011).
    [CrossRef] [PubMed]
  11. K. J. Voss, A. Morel, D. Antoine, “Detailed validation of the bidirectional effect in various Case 1 waters for application to ocean color imagery,” Biogeosciences 4(5), 781–789 (2007).
    [CrossRef]
  12. X. Zhang, M. Twardowski, M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50(9), 1240–1259 (2011).
    [CrossRef] [PubMed]
  13. J. M. Sullivan, M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
    [CrossRef] [PubMed]
  14. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” No. 5 (Reports of the International Ocean-Colour Coordinating Group, Dartmouth, Canada, 2006).
  15. T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72–78 (University of California, San Diego, Scripps Institution of Oceanography Visibility Laboratory, 1972).
  16. K. J. Voss, A. L. Chapin, “Upwelling radiance distribution camera system, NURADS,” Opt. Express 13(11), 4250–4262 (2005).
    [CrossRef] [PubMed]
  17. H. Claustre, A. Sciandra, D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5(3), 679–691 (2008).
    [CrossRef]
  18. S. Pegau, J. R. V. Zaneveld, B. G. Mitchell, J. L. Mueller, M. Kahru, J. Wieland, and M. Stramska, “Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume IV: Inherent optical properties: instruments, characterizations, field measurements, and data analysis protocols,” NASA/TM-2003–21621/Rev4-Vol IV (Goddard Space Flight Center, Greenbelt, MD, 2002).
  19. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
    [CrossRef]
  20. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. Kokhanovsky, ed. (Springer Praxis Books, to be published).
  21. A. L. Whitmire, E. Boss, T. J. Cowles, W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
    [CrossRef] [PubMed]
  22. J. Ras, H. Claustre, J. Uitz, “Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data,” Biogeosciences 5(2), 353–369 (2008).
    [CrossRef]
  23. L. Van Heukelem, C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
    [CrossRef] [PubMed]
  24. J. L. Mueller, R. R. Bidigare, C. Trees, W. M. Balch, J. Dore, D. T. Drapeau, D. Karl, L. Van Heukelem, and J. Perl, “Ocean optics protocols for satellite ocean color sensor validation, Revision 5, Volume V: Biogeochemical and bio-optical measurements and data analysis protocols,” NASA/TM-2003- (Goddard Space Flight Center, Greenbelt, MD, 2003).
  25. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
    [CrossRef] [PubMed]
  26. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
    [CrossRef] [PubMed]
  27. P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29(13), 1897–1900 (1990).
    [CrossRef] [PubMed]
  28. C. D. Mobley, B. Gentili, H. R. Gordon, Z. H. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32(36), 7484–7504 (1993).
    [CrossRef] [PubMed]
  29. C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
    [CrossRef] [PubMed]
  30. H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: Quantitative assessment,” Appl. Opt. 32(36), 7505–7511 (1993).
    [CrossRef] [PubMed]
  31. H. R. Gordon, K. Y. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
    [CrossRef]

2011

2009

2008

E. J. Kwiatkowska, B. A. Franz, G. Meister, C. R. McClain, X. X. Xiong, “Cross calibration of ocean-color bands from moderate resolution imaging spectroradiometer on Terra platform,” Appl. Opt. 47(36), 6796–6810 (2008).
[CrossRef] [PubMed]

H. Claustre, A. Sciandra, D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5(3), 679–691 (2008).
[CrossRef]

J. Ras, H. Claustre, J. Uitz, “Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data,” Biogeosciences 5(2), 353–369 (2008).
[CrossRef]

2007

K. J. Voss, A. Morel, D. Antoine, “Detailed validation of the bidirectional effect in various Case 1 waters for application to ocean color imagery,” Biogeosciences 4(5), 781–789 (2007).
[CrossRef]

A. L. Whitmire, E. Boss, T. J. Cowles, W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[CrossRef] [PubMed]

2005

2002

2001

H. Loisel, A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

L. Van Heukelem, C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[CrossRef] [PubMed]

1996

1993

1992

H. R. Gordon, K. Y. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[CrossRef]

1991

1990

1981

Aiken, J.

Antoine, D.

K. J. Voss, A. Morel, D. Antoine, “Detailed validation of the bidirectional effect in various Case 1 waters for application to ocean color imagery,” Biogeosciences 4(5), 781–789 (2007).
[CrossRef]

A. Morel, D. Antoine, B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[CrossRef] [PubMed]

Arnone, R.

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

Boss, E.

A. L. Whitmire, E. Boss, T. J. Cowles, W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

Chapin, A. L.

Clark, D. K.

Claustre, H.

J. Ras, H. Claustre, J. Uitz, “Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data,” Biogeosciences 5(2), 353–369 (2008).
[CrossRef]

H. Claustre, A. Sciandra, D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5(3), 679–691 (2008).
[CrossRef]

Cowles, T. J.

Ding, K. Y.

H. R. Gordon, K. Y. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[CrossRef]

Donaghay, P. L.

Du, K.

Fishwick, J.

Franz, B. A.

Freeman, S. A.

Gentili, B.

Gordon, H. R.

Hardman-Mountford, N.

Hirata, T.

Jin, Z. H.

Kattawar, G. W.

Kwiatkowska, E. J.

Lee, Z. P.

Lewis, M.

Loisel, H.

H. Loisel, A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[CrossRef]

Lubac, B.

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

McClain, C. R.

Meister, G.

Mobley, C. D.

Morel, A.

Pegau, W. S.

A. L. Whitmire, E. Boss, T. J. Cowles, W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

Ras, J.

J. Ras, H. Claustre, J. Uitz, “Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data,” Biogeosciences 5(2), 353–369 (2008).
[CrossRef]

Reinersman, P.

Sciandra, A.

H. Claustre, A. Sciandra, D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5(3), 679–691 (2008).
[CrossRef]

Stamnes, K.

Stavn, R. H.

Sullivan, J. M.

Sundman, L. K.

Teillet, P. M.

Thomas, C. S.

L. Van Heukelem, C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[CrossRef] [PubMed]

Twardowski, M.

Twardowski, M. S.

J. M. Sullivan, M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
[CrossRef] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

Uitz, J.

J. Ras, H. Claustre, J. Uitz, “Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data,” Biogeosciences 5(2), 353–369 (2008).
[CrossRef]

Van Heukelem, L.

L. Van Heukelem, C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[CrossRef] [PubMed]

Vaulot, D.

H. Claustre, A. Sciandra, D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5(3), 679–691 (2008).
[CrossRef]

Voss, K. J.

Weidemann, A.

Whitmire, A. L.

Xiong, X. X.

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

Zhang, X.

Zibordi, G.

Appl. Opt.

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20(24), 4175–4180 (1981).
[CrossRef] [PubMed]

P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29(13), 1897–1900 (1990).
[CrossRef] [PubMed]

H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: Quantitative assessment,” Appl. Opt. 32(36), 7505–7511 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30(30), 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional Aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
[CrossRef] [PubMed]

A. Morel, D. Antoine, B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[CrossRef] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. H. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32(36), 7484–7504 (1993).
[CrossRef] [PubMed]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
[CrossRef] [PubMed]

E. J. Kwiatkowska, B. A. Franz, G. Meister, C. R. McClain, X. X. Xiong, “Cross calibration of ocean-color bands from moderate resolution imaging spectroradiometer on Terra platform,” Appl. Opt. 47(36), 6796–6810 (2008).
[CrossRef] [PubMed]

T. Hirata, N. Hardman-Mountford, J. Aiken, J. Fishwick, “Relationship between the distribution function of ocean nadir radiance and inherent optical properties for oceanic waters,” Appl. Opt. 48(17), 3129–3138 (2009).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
[CrossRef] [PubMed]

X. Zhang, M. Twardowski, M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50(9), 1240–1259 (2011).
[CrossRef] [PubMed]

Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50(19), 3155–3167 (2011).
[CrossRef] [PubMed]

Biogeosciences

J. Ras, H. Claustre, J. Uitz, “Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data,” Biogeosciences 5(2), 353–369 (2008).
[CrossRef]

K. J. Voss, A. Morel, D. Antoine, “Detailed validation of the bidirectional effect in various Case 1 waters for application to ocean color imagery,” Biogeosciences 4(5), 781–789 (2007).
[CrossRef]

H. Claustre, A. Sciandra, D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5(3), 679–691 (2008).
[CrossRef]

Int. J. Remote Sens.

H. Loisel, A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[CrossRef]

J. Chromatogr. A

L. Van Heukelem, C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[CrossRef] [PubMed]

J. Geophys. Res.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[CrossRef]

Limnol. Oceanogr.

H. R. Gordon, K. Y. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37(3), 491–500 (1992).
[CrossRef]

Opt. Express

Other

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. Kokhanovsky, ed. (Springer Praxis Books, to be published).

S. Pegau, J. R. V. Zaneveld, B. G. Mitchell, J. L. Mueller, M. Kahru, J. Wieland, and M. Stramska, “Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume IV: Inherent optical properties: instruments, characterizations, field measurements, and data analysis protocols,” NASA/TM-2003–21621/Rev4-Vol IV (Goddard Space Flight Center, Greenbelt, MD, 2002).

H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).

IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” No. 5 (Reports of the International Ocean-Colour Coordinating Group, Dartmouth, Canada, 2006).

T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72–78 (University of California, San Diego, Scripps Institution of Oceanography Visibility Laboratory, 1972).

J. L. Mueller, R. R. Bidigare, C. Trees, W. M. Balch, J. Dore, D. T. Drapeau, D. Karl, L. Van Heukelem, and J. Perl, “Ocean optics protocols for satellite ocean color sensor validation, Revision 5, Volume V: Biogeochemical and bio-optical measurements and data analysis protocols,” NASA/TM-2003- (Goddard Space Flight Center, Greenbelt, MD, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of Sullivan-Twardowski and Petzold turbid water phase functions used in methods 1-3. The phase function for method 1 is normalized over all angles (Eq. (5)) and multiplied by bp to generate βp(θ) in the RT model. The phase functions for methods 2 and 3 are normalized in the backward direction (Eq. (6)) and multiplied by bbp to generate βp(θ) in the RT model. Inset shows details of methods 2 and 3 over the backscattering directions.

Fig. 2
Fig. 2

Depth-weighted bp (top) and apg (bottom) at 526 nm plotted against total chlorophyll concentration. Left plots on both the top and bottom show details near the origin. Solid lines plot the IOP model used as a reference for Case I [6]. Solid dots and open circles represent conditions designated as Case I and Case II, respectively.

Fig. 3
Fig. 3

Lu(θv, ϕ) / Lu(0, 0) for MAG2002 vs. NuRADS data (A and C) and Lee2011 vs. NuRADS data (B and D). The plots for each of the 5 wavelengths have been offset vertically by 1.0 for clarity. Solid lines on each plot show the 1:1 slope and dashed lines show a linear fit to the data. Note that there is no obvious spectral dependence of these results.

Fig. 4
Fig. 4

Summary of D(θv, ϕ) as a function of chlorophyll (Chl) for the 526 nm NuRADS images in Case I water. See text for a description of box plots and of the population sizes (N). From left to right within each group of boxes: Black boxes correspond to values from MAG2002 minus the data. Light blue boxes correspond to values from Lee2011 minus the data. Green, red, and dark blue boxes correspond to the RT model using VSF parameterization methods 1-3, respectively, minus the data. The shaded grey area around 0 difference is the mean coefficient of variation of the NuRADS images at the points used to compute D(θv, ϕ).

Fig. 5
Fig. 5

Summary of D(θv, ϕ) as a function of chlorophyll (Chl) for the 526 nm NuRADS images in Case II water. See text and caption for Fig. 4 for description of boxes.

Fig. 6
Fig. 6

Summary of D(θv, ϕ) as a function of view azimuth for the 526 nm NuRADS images in Case I water. The principal plane is defined by azimuth = 0° (toward the sun) and azimuth = 180° (away from the sun). See text and caption for Fig. 4 for description of boxes.

Fig. 7
Fig. 7

Summary of D(θv, ϕ) as a function of view azimuth for the 526 nm NuRADS images in Case II water. The principal plane is defined by azimuth = 0° (toward the sun) and azimuth = 180° (away from the sun). See text and caption for Fig. 4 for description of boxes.

Fig. 8
Fig. 8

Summary of D(θv, ϕ) as a function of θs for the 526 nm NuRADS images in Case I water. See text and caption for Fig. 4 for description of boxes.

Fig. 9
Fig. 9

Summary of D(θv, ϕ) as a function of solar zenith angle for the 526 nm NuRADS images in Case II water. See text and caption for Fig. 4 for description of boxes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

v w e i g h t e d ( λ ) = 0 z max v ( λ , z ) exp ( ( a t ( λ , z ) + b b t ( λ , z ) ) z ) d z 0 z max exp ( ( a t ( λ , z ) + b b t ( λ , z ) ) z ) d z
R r s ( θ s , θ v a , ϕ ) = ( G 0 w ( θ s , θ v a , ϕ ) + G 1 w ( θ s , θ v a , ϕ ) b b w κ ) b b w κ + ( G 0 p ( θ s , θ v a , ϕ ) + G 1 p ( θ s , θ v a , ϕ ) b b p κ ) b b p κ
L u ( θ s , θ v , ϕ ) L u ( θ s , 0 , 0 ) = L w ( θ s , θ v a , ϕ ) L w ( θ s , 0 , 0 ) ( 0 ) ( θ v a )
( θ v a ) = 0.957 * T f ( θ v a ) 0.985 m 2
2 π 0 π β ˜ p ( θ ) sin ( θ ) d θ = 1
2 π π / 2 π β ˜ p ( θ ) sin ( θ ) d θ = 1
D ( θ v , ϕ ) = [ L u M ( θ v , ϕ ) L u M ( 0 , 0 ) L u D ( θ v , ϕ ) L u D ( 0 , 0 ) ] × 100

Metrics