Abstract

We present three monolithic metamaterial-based THz bandpass filters, the skewed circular slot rings, meandered slots and Jerusalem cross slots, to fit in the THz gap. These THz bandpass filters are comprised of a metal-dielectric-metal (MDM) structure that supports multiple resonances of electric dipole, magnetic dipole, and standing-wave-like modes. By exciting and further hybridizing these individual resonance modes, we demonstrate excellent performance of broad bandwidth and sharp band-edge transition beyond conventional bandpass filters. By further employing our ad hoc Genetic Algorithm (GA) and Periodic Method of Moments (PMM) to optimize our designs, we achieve an ultra-broad 3dB fractional bandwidth and sharp band-edge transition up to 82.2% and 58.3 dB/octave, respectively, benefiting the practical applications such as material recognition in security systems, imaging, and absorbers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
    [CrossRef] [PubMed]
  2. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express 11(7), 723–734 (2003).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  4. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  5. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  6. H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18(21), 22187–22198 (2010).
    [CrossRef] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  8. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  9. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  10. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
    [CrossRef]
  11. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [CrossRef]
  12. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
    [CrossRef]
  13. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  14. F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
    [CrossRef]
  15. D. R. Chowdhury, R. Singh, M. Reiten, H. T. Chen, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “A broadband planar terahertz metamaterial with nested structure,” Opt. Express 19(17), 15817–15823 (2011).
    [CrossRef] [PubMed]
  16. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
    [CrossRef] [PubMed]
  17. M. Z. Lu, W. Z. Li, and E. R. Brown, “Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36(7), 1071–1073 (2011).
    [CrossRef] [PubMed]
  18. M. Al-Joumayly and N. Behdad, “A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
    [CrossRef]
  19. S. Genovesi, T. Yen, A. Monorchio, E. Prati, Y. Chiang, and F. Costa, “Optimization of wide-bandpass filter within the Terahertz frequency regime,” in Proceedings of XXXth URSI General Assembly and Scientific Symposium, (2011), pp. 1–4.
  20. D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: A review,” IEEE Trans. Antenn. Propag. 45(3), 343–353 (1997).
    [CrossRef]
  21. T. K. Wu, Frequency selective surface and grid array, (John Wiley & Sons, 1995).
  22. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
    [CrossRef] [PubMed]
  23. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [CrossRef] [PubMed]
  24. S. T. Chase and R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22(11), 1775–1779 (1983).
    [CrossRef] [PubMed]
  25. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005).
    [CrossRef] [PubMed]
  26. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  27. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [CrossRef] [PubMed]

2011 (3)

2010 (1)

2009 (1)

M. Al-Joumayly and N. Behdad, “A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[CrossRef]

2008 (3)

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

2007 (4)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2006 (2)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef] [PubMed]

2005 (3)

2003 (2)

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

1999 (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

1997 (1)

D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: A review,” IEEE Trans. Antenn. Propag. 45(3), 343–353 (1997).
[CrossRef]

1995 (1)

1983 (1)

Al-Joumayly, M.

M. Al-Joumayly and N. Behdad, “A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[CrossRef]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Bearpark, T.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Behdad, N.

M. Al-Joumayly and N. Behdad, “A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[CrossRef]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Brown, E. R.

Brueck, S. R. J.

Cai, W. S.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Chase, S. T.

Chen, H. T.

D. R. Chowdhury, R. Singh, M. Reiten, H. T. Chen, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “A broadband planar terahertz metamaterial with nested structure,” Opt. Express 19(17), 15817–15823 (2011).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, M.

Chen, Z. C.

Chettiar, U. K.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Chowdhury, D. R.

Christopoulos, C.

Dolling, G.

Economon, E. N.

Enkrich, C.

Fan, W. J.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Fitch, M. J.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Greedy, S.

Grzegorczyk, T. M.

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Han, N. R.

Hayden, L. M.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Hong, M. H.

Hou, B.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Hu, B. B.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Joseph, R. D.

Kildishev, A. V.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Kong, J. A.

Koschny, T.

Leahy-Hoppa, M. R.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

Li, W. Z.

Lim, C. S.

Linden, S.

Liu, L.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Liu, Z. W.

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Lu, J.

Lu, M. Z.

Malloy, K. J.

Michielssen, E.

D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: A review,” IEEE Trans. Antenn. Propag. 45(3), 343–353 (1997).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Miyamaru, F.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Ng, B.

Nuss, M. C.

O’Hara, J. F.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Osgood, R. M.

Osiander, R.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

Pacheco, J.

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Panoiu, N. C.

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Paul, J.

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Reiten, M.

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Saito, Y.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Seddon, N.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sheng, P.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Singh, R.

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

Takeda, M.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Taylor, A. J.

D. R. Chowdhury, R. Singh, M. Reiten, H. T. Chen, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “A broadband planar terahertz metamaterial with nested structure,” Opt. Express 19(17), 15817–15823 (2011).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Wakatsuchi, H.

Wegener, M.

Weile, D. S.

D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: A review,” IEEE Trans. Antenn. Propag. 45(3), 343–353 (1997).
[CrossRef]

Wen, W.

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Wu, B. I.

Zhang, S.

Zhang, X.

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zhang, Y.

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zheng, X.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

Zhou, J. F.

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B-Lasers Opt. (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, ““Recent advances in terahertz imaging,” Appl. Phys. B-Lasers Opt. 68(6), 1085–1094 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

M. Al-Joumayly and N. Behdad, “A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 57(2), 452–459 (2009).
[CrossRef]

D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: A review,” IEEE Trans. Antenn. Propag. 45(3), 343–353 (1997).
[CrossRef]

Nat. Mater. (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (1)

F. Miyamaru, Y. Saito, M. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Other (2)

T. K. Wu, Frequency selective surface and grid array, (John Wiley & Sons, 1995).

S. Genovesi, T. Yen, A. Monorchio, E. Prati, Y. Chiang, and F. Costa, “Optimization of wide-bandpass filter within the Terahertz frequency regime,” in Proceedings of XXXth URSI General Assembly and Scientific Symposium, (2011), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The shapes and dimensions of the skewed circular slot ring; Tx = 70 μm, W = 13 μm, rin = 27 μm, and rout = 32.5 μm when the dashed parallelogram indicates the unit cell of the skewed circular slot ring. (b) Unit cell of the proposed three MDM, which consists of two components: MDM-I and MDM-O.

Fig. 2
Fig. 2

Simulated transmission (red solid lines) and reflection (blue dotted lines) spectra of (a) MDM-I, (b) MDM-O, and (c) the MDM of the skewed circular slot ring sample. For all structures, the Mylar substrates are assumed lossless.

Fig. 3
Fig. 3

Simulated induced-surface-current distributions of (a) MDM-I at 1.19 THz and 3.01 THz, (b) MDM-O at 1.54 THz and 3.34 THz, and (c) the MDM at 1.04 THz and 1.41 THz. The yellow parts indicate the metallic layer, copper, and the orange cones display the directions of the induced surface-currents.

Fig. 4
Fig. 4

The transmittance spectra of the skewed circular slot ring. The inset shows the optical microscopic (OM) image of the fabricated sample.

Fig. 5
Fig. 5

(a) Flow chart of the genetic algorithm optimization (b) The MDM configuration to be optimized: stack up comprising a periodic surface printed on each side of a Mylar dielectric substrate and binary encoding of the unit cell. Example of the mask employed for the optimization of the frequency response of (c) the broadband passband filter and (d) of the sharp band-edge transition filter.

Fig. 6
Fig. 6

(a) The unit cell of the MDM meandered slots; Tx = 64 μm and slot width = 4 μm. (b) The transmittance spectra of the MDM meandered slot. The inset shows the OM image of the fabricated sample. (c) The overall footprint of the periodic meandered shape (highlighted in black) exceeds a square of side Tx (dashed blue line).

Fig. 7
Fig. 7

(a) The unit cell of the MDM Jerusalem cross slots; Tx = 48 μm, W = 4 μm, S = 12 μm, M = 37 μm, N = 33 μm, L = 45 μm, Hcap = 20 μm, and Jcap = 10 μm. (b) The transmittance spectra of the MDM Jerusalem cross slot. The inset shows the OM image of the fabricated sample.

Fig. 8
Fig. 8

The simulated results of misalignment effect. We misaligned two layers along both x- and y-directions on purpose. Even for the worst case (i.e., the misalignment is up to half periodicity along both x- and y-directions), the corresponding frequencies results remain the same, and the transmission coefficients show a small offset less than 1.5%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F 1 = a v g [ A T ( f ) | f B r ] ( B max ( T ( f ) | f R r ) )
F 2 = c 1 { a v g [ A T ( f ) | f B r ] } + c 2 { α + β ( B max ( T ( f ) | f < F 3 f > F 4 ) ) }

Metrics