Abstract

To improve the lateral resolution of the blood vessels along arbitrary direction out of focus in photoacoustic microscopy (PAM), we propose an adaptive synthetic-aperture focusing technique (ASAFT) for microvasculature imaging which can be automatically applied to each branch of blood vessels, based on our previous two-dimensional (2D) SAFT. The ASAFT is validated both in the phantom study and in vivo imaging. The results demonstrate that ASAFT can provide images of blood vessels with better lateral resolution both at different depths and along various directions compared with one-dimensional and 2D SAFT.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
    [CrossRef] [PubMed]
  2. J.k.-J. Li, Dynamics of the Vascular System (World Scientific, Singapore, 2004).
  3. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
    [CrossRef] [PubMed]
  4. A. M. Mendonca and A. Campilho, ““Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE,” IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006).
    [CrossRef]
  5. A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
    [CrossRef]
  6. A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav. 87(1), 179–197 (2007).
    [CrossRef] [PubMed]
  7. J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
    [PubMed]
  8. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
    [CrossRef] [PubMed]
  9. E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
    [CrossRef] [PubMed]
  10. A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing--more than a nutrient,” World J. Surg. 28(3), 294–300 (2004).
    [CrossRef] [PubMed]
  11. C. Aalkjaer and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol. 144(5), 605–616 (2005).
    [CrossRef] [PubMed]
  12. R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
    [CrossRef] [PubMed]
  13. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
    [CrossRef] [PubMed]
  14. U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
    [PubMed]
  15. M. Neeman, “Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work,” J. Cell. Biochem. Suppl. 87(S39), 11–17 (2002).
    [CrossRef] [PubMed]
  16. J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
    [CrossRef] [PubMed]
  17. U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
    [CrossRef] [PubMed]
  18. K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci 3(4), 247–253 (2010).
    [CrossRef] [PubMed]
  19. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  20. M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
    [CrossRef] [PubMed]
  21. D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
    [CrossRef] [PubMed]
  22. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006).
    [CrossRef] [PubMed]
  23. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
    [CrossRef]
  24. V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
    [CrossRef] [PubMed]
  25. X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, and Q. M. Luo, “High-resolution photoacoustic microscope for rat brain imaging in vivo,” Chin. Opt. Lett. 8(6), 609–611 (2010).
    [CrossRef]
  26. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  27. M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [CrossRef] [PubMed]
  28. H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
    [CrossRef] [PubMed]
  29. C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
    [CrossRef] [PubMed]
  30. S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12), 1291–1293 (2008).
    [CrossRef] [PubMed]
  31. Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
    [CrossRef]
  32. C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106(2), 695–706 (1999).
    [CrossRef]
  33. C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with improved synthetic focusing,” Proc. SPIE 5967, 255–262 (2005).
    [CrossRef]
  34. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering, ” in Proceedings of Medical Image Computing & Computer Assisted Intervention (MICCAI), W. Wells, A. Colchester, and S. Delp, eds., 1496 of Lecture Notes in Computer Science, (Springer- Verlag, Berlin, 1998), 130–137.
  35. P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE 5370, 1785–1794 (2004).
    [CrossRef]

2011 (3)

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[CrossRef]

2010 (3)

X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, and Q. M. Luo, “High-resolution photoacoustic microscope for rat brain imaging in vivo,” Chin. Opt. Lett. 8(6), 609–611 (2010).
[CrossRef]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci 3(4), 247–253 (2010).
[CrossRef] [PubMed]

2009 (4)

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

2008 (4)

S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12), 1291–1293 (2008).
[CrossRef] [PubMed]

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
[CrossRef]

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav. 87(1), 179–197 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

2006 (5)

M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
[PubMed]

A. M. Mendonca and A. Campilho, ““Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE,” IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005 (3)

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

C. Aalkjaer and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol. 144(5), 605–616 (2005).
[CrossRef] [PubMed]

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with improved synthetic focusing,” Proc. SPIE 5967, 255–262 (2005).
[CrossRef]

2004 (3)

P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE 5370, 1785–1794 (2004).
[CrossRef]

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
[CrossRef] [PubMed]

A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing--more than a nutrient,” World J. Surg. 28(3), 294–300 (2004).
[CrossRef] [PubMed]

2003 (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Neeman, “Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work,” J. Cell. Biochem. Suppl. 87(S39), 11–17 (2002).
[CrossRef] [PubMed]

2000 (2)

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
[CrossRef] [PubMed]

1999 (1)

C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106(2), 695–706 (1999).
[CrossRef]

1991 (1)

J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
[PubMed]

Aalkjaer, C.

C. Aalkjaer and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol. 144(5), 605–616 (2005).
[CrossRef] [PubMed]

Abramovitch, R.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Aglyamov, S. R.

Allen, J. S.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Bansilal, S.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Barbour, D. L.

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

Cai, X.

Campilho, A.

A. M. Mendonca and A. Campilho, ““Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE,” IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006).
[CrossRef]

Casu, B.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

Cury, R. C.

U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
[PubMed]

de Mul, F. F. M.

C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106(2), 695–706 (1999).
[CrossRef]

Deng, Z. L.

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[CrossRef]

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

Durukan, A.

A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav. 87(1), 179–197 (2007).
[CrossRef] [PubMed]

Emelianov, S. Y.

Farkouh, M.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Fayad, Z. A.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Ferencik, M.

U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
[PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

Fuster, V.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Gaull, M.

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

Gill-Sharp, K. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

Gong, H.

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[CrossRef]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

Griewing, B.

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

Griffioen, A. W.

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
[CrossRef] [PubMed]

Hargeaves, R.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Hemler, P. F.

P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE 5370, 1785–1794 (2004).
[CrossRef]

Hoelen, C. G. A.

C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106(2), 695–706 (1999).
[CrossRef]

Hoffmann, U.

U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
[PubMed]

Hu, S.

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

Ilan, N.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Jain, R. K.

J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
[PubMed]

Karpiouk, A. B.

Kessler, C.

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

Lanza, G. M.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Lao, Y. Q.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Less, J. R.

J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
[PubMed]

Li, M. L.

Li, P. C.

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with improved synthetic focusing,” Proc. SPIE 5967, 255–262 (2005).
[CrossRef]

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
[CrossRef] [PubMed]

Liao, C. K.

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with improved synthetic focusing,” Proc. SPIE 5967, 255–262 (2005).
[CrossRef]

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004).
[CrossRef] [PubMed]

Livnat, A.

A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
[CrossRef]

Luo, Q. M.

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[CrossRef]

X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, and Q. M. Luo, “High-resolution photoacoustic microscope for rat brain imaging in vivo,” Chin. Opt. Lett. 8(6), 609–611 (2010).
[CrossRef]

Machac, J.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Maslov, K.

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci 3(4), 247–253 (2010).
[CrossRef] [PubMed]

X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, and Q. M. Luo, “High-resolution photoacoustic microscope for rat brain imaging in vivo,” Chin. Opt. Lett. 8(6), 609–611 (2010).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[CrossRef] [PubMed]

Mayevsky, A.

A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
[CrossRef]

McAuliffe, M. J.

P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE 5370, 1785–1794 (2004).
[CrossRef]

McCreedy, E. S.

P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE 5370, 1785–1794 (2004).
[CrossRef]

Mendonca, A. M.

A. M. Mendonca and A. Campilho, ““Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE,” IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006).
[CrossRef]

Metzger, S.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Michaely, E. B.

A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
[CrossRef]

Motsch, L.

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

Mustoe, T. A.

A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing--more than a nutrient,” World J. Surg. 28(3), 294–300 (2004).
[CrossRef] [PubMed]

Myers, K. S.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Naggi, A.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Neeman, M.

M. Neeman, “Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work,” J. Cell. Biochem. Suppl. 87(S39), 11–17 (2002).
[CrossRef] [PubMed]

Nilsson, H.

C. Aalkjaer and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol. 144(5), 605–616 (2005).
[CrossRef] [PubMed]

Pan, D.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Park, S.

Pena, A. J.

U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
[PubMed]

Pinto, C. A.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Pramanik, M.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Rafique, A.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Ramakrishnan, S.

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
[CrossRef] [PubMed]

Rudd, J. H.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Sarid, R.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Schminke, U.

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

Schwartz, J. A.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

Sedgewick, J.

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
[CrossRef] [PubMed]

Senpan, A.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Sevick, E. M.

J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
[PubMed]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Skalak, T. C.

J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
[PubMed]

Stoica, G.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[CrossRef] [PubMed]

Tandara, A. A.

A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing--more than a nutrient,” World J. Surg. 28(3), 294–300 (2004).
[CrossRef] [PubMed]

Tatlisumak, T.

A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav. 87(1), 179–197 (2007).
[CrossRef] [PubMed]

Tolmasov, M.

A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
[CrossRef]

Tong, C.

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Tsytsarev, V.

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

Vlodavsky, I.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Wang, J. C.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

Wang, L. H.

Wang, L. H. V.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Wang, L. V.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci 3(4), 247–253 (2010).
[CrossRef] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[CrossRef] [PubMed]

Wickline, S. A.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Wild, R.

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
[CrossRef] [PubMed]

Xiang, L. Z.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Xing, D.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Yaar, A.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Yacoby-Zeevi, O.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Yang, S. H.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Yang, X. Q.

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[CrossRef]

X. Q. Yang, X. Cai, K. Maslov, L. H. Wang, and Q. M. Luo, “High-resolution photoacoustic microscope for rat brain imaging in vivo,” Chin. Opt. Lett. 8(6), 609–611 (2010).
[CrossRef]

Yao, J. J.

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

Yodh, A. G.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

Zcharia, E.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Zetser, A.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Zhang, H. F.

K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci 3(4), 247–253 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[CrossRef] [PubMed]

Zhang, H. Y.

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

Zilka, R.

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Br. J. Pharmacol. (1)

C. Aalkjaer and H. Nilsson, “Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol. 144(5), 605–616 (2005).
[CrossRef] [PubMed]

Cancer Res. (1)

J. R. Less, T. C. Skalak, E. M. Sevick, and R. K. Jain, “Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions,” Cancer Res. 51(1), 265–273 (1991).
[PubMed]

Chin. Opt. Lett. (1)

FASEB J. (2)

D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Y. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25(3), 875–882 (2011).
[CrossRef] [PubMed]

E. Zcharia, R. Zilka, A. Yaar, O. Yacoby-Zeevi, A. Zetser, S. Metzger, R. Sarid, A. Naggi, B. Casu, N. Ilan, I. Vlodavsky, and R. Abramovitch, “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” FASEB J. 19(2), 211–221 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imag. (1)

A. M. Mendonca and A. Campilho, ““Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE,” IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006).
[CrossRef]

J Innov Opt Health Sci (1)

K. Maslov, H. F. Zhang, and L. V. Wang, “Photoacoustic generation of focused quasi-unipolar pressure pulses,” J Innov Opt Health Sci 3(4), 247–253 (2010).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106(2), 695–706 (1999).
[CrossRef]

J. Appl. Phys. (1)

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy,” J. Appl. Phys. 109(10), 104701 (2011).
[CrossRef]

J. Biomed. Opt. (4)

V. Tsytsarev, S. Hu, J. J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[CrossRef] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

J. Cell. Biochem. Suppl. (1)

M. Neeman, “Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work,” J. Cell. Biochem. Suppl. 87(S39), 11–17 (2002).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. Innovative Opt. Health Sci. (1)

A. Livnat, M. Tolmasov, E. B. Michaely, and A. Mayevsky, “Real-time monitoring of mitochondrial function and cerebral blood flow following focal ischemia in rats,” J. Innovative Opt. Health Sci. 1(01), 63–69 (2008).
[CrossRef]

J. Neurol. (1)

U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” J. Neurol. 247(2), 106–111 (2000).
[CrossRef] [PubMed]

J. Nucl. Med. (2)

U. Hoffmann, M. Ferencik, R. C. Cury, and A. J. Pena, “Coronary CT angiography,” J. Nucl. Med. 47(5), 797–806 (2006).
[PubMed]

J. H. Rudd, K. S. Myers, S. Bansilal, J. Machac, C. A. Pinto, C. Tong, A. Rafique, R. Hargeaves, M. Farkouh, V. Fuster, and Z. A. Fayad, “Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations,” J. Nucl. Med. 49(6), 871–878 (2008).
[CrossRef] [PubMed]

Microvasc. Res. (1)

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, “Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density,” Microvasc. Res. 59(3), 368–376 (2000).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Pharmacol. Biochem. Behav. (1)

A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav. 87(1), 179–197 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Proc. SPIE (2)

P. F. Hemler, E. S. McCreedy, and M. J. McAuliffe, “Performance evaluation of multiscale vessel enhancement filtering,” Proc. SPIE 5370, 1785–1794 (2004).
[CrossRef]

C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with improved synthetic focusing,” Proc. SPIE 5967, 255–262 (2005).
[CrossRef]

World J. Surg. (1)

A. A. Tandara and T. A. Mustoe, “Oxygen in wound healing--more than a nutrient,” World J. Surg. 28(3), 294–300 (2004).
[CrossRef] [PubMed]

Other (2)

J.k.-J. Li, Dynamics of the Vascular System (World Scientific, Singapore, 2004).

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering, ” in Proceedings of Medical Image Computing & Computer Assisted Intervention (MICCAI), W. Wells, A. Colchester, and S. Delp, eds., 1496 of Lecture Notes in Computer Science, (Springer- Verlag, Berlin, 1998), 130–137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the virtual-detector concept in adaptive SAFT

Fig. 2
Fig. 2

Images of the phantom containing seven 25 μm-tungsten wires, which were imaged out of focus. (a) the MAP image acquired from the original data; The dotted lines marked by t1 and t2 are the cross-sectional profile of the corresponding tungsten wires used for further quantitative analysis; The tungsten wires indicated with 1-6 are all in different directions and at different depths; (b)-(d) the MAP image after processed with 1D SAFT, 2D SAFT and ASAFT, respectively; (e) two-dimensional skeleton image extracted from (c); (f) the three-dimensional rendering of the phantom.

Fig. 3
Fig. 3

(a) and (b) are the lateral profile of the tungsten wires marked by t1 and t2 in Fig. 2(a).

Fig. 4
Fig. 4

Images of the vascular distribution in the dorsal dermis in vivo: (a) original image, (b) 1D SAFT image, (c) 2D SAFT image, (d) ASAFT image and (e) the photography of the vascular network acquired using a stereomicroscope. (f) the 2D vessel skeleton image extracted from (c). The vessels indicated by 1-4 are also shown in Fig. 5(a) and these vessels marked by the dashed boxes are used for further analysis.

Fig. 5
Fig. 5

In vivo B-scan images whose position is marked with the dashed line in Fig. 4(a) and processed with different methods: (a) original image, (b) 1D SAFT, (c) 2D SAFT, (d) ASAFT. The vessels labeled with 1 and 2 are at the focus, while 3 and 4 are out of focus.

Tables (1)

Tables Icon

Table 1 Comparison of the Diameters Measured by Stereomicroscope and PAM

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S S A F T ( x i , y j , t i j ) = k = 1 N S ( x i ' , y j ' , t i j Δ t i ' j ' )

Metrics