Abstract

We perform experimental and numerical investigations of the transmission reach of polarization-switched QPSK (PS-QPSK) and polarization-multiplexed QPSK (PM-QPSK) for three different fiber span lengths: 83, 111 and 136 km. In the experimental comparison we investigate the performance of PS-QPSK at 20 Gbaud and PM-QPSK at the same bit rate (60 Gbit/s) and at the same symbol rate, both the single channel case and a WDM system with 9 channels on a 50 GHz grid. We show that PS-QPSK gives significant benefits in transmission reach for all span lengths. Compared to PM-QPSK, use of PS-QPSK increases the reach with more than 41% for the same symbol rate and 21% for the same bit rate. In the numerical simulations we use the same data rates as in the experiment. The simulation results agree well with the experimental findings, but the transmission reach is longer due to the absence of various non-ideal effects and higher back-to-back sensitivity. Apart from using data coded in the absolute phase in the simulations, we also investigate differentially coded PS-QPSK for the first time and compare with PM-QPSK with differential coding. The power efficiency advantage of PS-QPSK then increases with approximately 0.3 dB at a bit error rate of 10−3, resulting in a further relative transmission reach improvement over PM-QPSK. Both the experimental and the numerical results indicate that PS-QPSK has slightly higher tolerance to inter-channel nonlinear crosstalk than PM-QPSK.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  2. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [CrossRef]
  3. M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” Proc. of ECOC 2011, Tu.6.B.6 (2011).
  4. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  5. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization-switched QPSK (PS-QPSK) in dispersion managed WDM transmissions,” Proc. of ECOC 2010, Th.10.E.2 (2010).
  6. M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express 19(8), 7839–7846 (2011).
    [CrossRef] [PubMed]
  7. J. K. Fischer, L. Molle, M. Nölle, D.-D. Grob, and C. Schubert, “Experimental investigation of 28-GBd polarization-switched quadrature phase-shift keying signals” Proc. of ECOC 2011, Mo.2.B.1 (2011).
  8. D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
    [CrossRef]
  9. D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
    [CrossRef] [PubMed]
  10. L. E. Nelson, X. Zhou, N. Mac Suibhne, A. D. Ellis, and P. Magill, “Experimental comparison of coherent polarization-switched QPSK to polarization-multiplexed QPSK for 10 × 100 km WDM transmission,” Opt. Express 19(11), 10849–10856 (2011).
    [CrossRef] [PubMed]
  11. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, M. Salsi, P. Tran, E. Dutisseuil, G. Charlet, and S. Bigo, “Experimental investigation of 28Gbaud polarization switched- and polarization division multiplexed-QPSK in WDM long-haul transmission system,” Proc. of ECOC 2011, Mo.2.B.3 (2011).
  12. M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express 19(24), 24370–24375 (2011).
    [CrossRef] [PubMed]
  13. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  14. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19(8), 7734–7741 (2011).
    [CrossRef] [PubMed]
  15. D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technol. 17(12), 2520–2529 (1999).
    [CrossRef]

2012 (1)

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

2011 (5)

2010 (1)

2009 (2)

1999 (1)

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Agrell, E.

Andrekson, P. A.

Bayvel, P.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

Behrens, C.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

Bosco, G.

Carena, A.

Curri, V.

Ellis, A. D.

Fischer, J. K.

Forghieri, F.

Johannisson, P.

Karlsson, M.

Killey, R. I.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

Lavery, D.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

Mac Suibhne, N.

Magill, P.

Makovejs, S.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

Menyuk, C. R.

Millar, D. S.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

Molle, L.

Nelson, L. E.

Nölle, M.

Peckham, D.

Poggiolini, P.

Savory, S. J.

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

Schmidt-Langhorst, C.

Schubert, C.

Sjödin, M.

Thomsen, B. C.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wang, D.

Wymeersch, H.

Zhou, X.

IEEE Photon. Technol. Lett. (1)

D. Lavery, C. Behrens, S. Makovejs, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Long-haul transmission of PS-QPSK at 100 Gb/s using digital backpropagation,” IEEE Photon. Technol. Lett. 24(3), 176–178 (2012).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (7)

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
[CrossRef] [PubMed]

L. E. Nelson, X. Zhou, N. Mac Suibhne, A. D. Ellis, and P. Magill, “Experimental comparison of coherent polarization-switched QPSK to polarization-multiplexed QPSK for 10 × 100 km WDM transmission,” Opt. Express 19(11), 10849–10856 (2011).
[CrossRef] [PubMed]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19(8), 7734–7741 (2011).
[CrossRef] [PubMed]

M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express 19(8), 7839–7846 (2011).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
[CrossRef] [PubMed]

M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express 19(24), 24370–24375 (2011).
[CrossRef] [PubMed]

Other (4)

J. K. Fischer, L. Molle, M. Nölle, D.-D. Grob, and C. Schubert, “Experimental investigation of 28-GBd polarization-switched quadrature phase-shift keying signals” Proc. of ECOC 2011, Mo.2.B.1 (2011).

J. Renaudier, O. Bertran-Pardo, H. Mardoyan, M. Salsi, P. Tran, E. Dutisseuil, G. Charlet, and S. Bigo, “Experimental investigation of 28Gbaud polarization switched- and polarization division multiplexed-QPSK in WDM long-haul transmission system,” Proc. of ECOC 2011, Mo.2.B.3 (2011).

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization-switched QPSK (PS-QPSK) in dispersion managed WDM transmissions,” Proc. of ECOC 2010, Th.10.E.2 (2010).

M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” Proc. of ECOC 2011, Tu.6.B.6 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental setup. (a) PM-QPSK transmitter. (b) PS-QPSK transmitter. (c) Decorrelation of odd and even WDM channels. (d) The transmission loop used for long-haul transmission.

Fig. 2
Fig. 2

The coherent receiver used to detect the signal, and the DSP blocks.

Fig. 3
Fig. 3

(a) The experimentally measured back-to-back BER together with the theory. (b) Simulation results for non-differential and differential coding of data. Theoretical results for non-differential coding are included for comparison.

Fig. 4
Fig. 4

Experimentally measured BER at the receiver as a function of the transmission distance for the different span lengths. (a) 83 km. (b) 111 km. (c) 136 km.

Fig. 5
Fig. 5

Optimal launch power as a function of the span length for PS- and PM-QPSK. (a) In the experiment. (b) In the simulations.

Fig. 6
Fig. 6

Reach increase when using PS-QPSK instead of PM-QPSK as a function of the fiber span length. (a) Experimental results with non-differential coding. (b) Simulations with non-differential coding. (c) Simulations with differential coding.

Fig. 7
Fig. 7

Comparison of the transmission reach in the experiment with the transmission reach in the simulations for (a) PS-QPSK at 20 Gbaud, (b) PM-QPSK at the same bit rate (60 Gbit/s), and (c) PM-QPSK at 20 Gbaud. (d) The WDM reach in the experiment divided by the WDM reach in the simulations for each case. The same legend as in (a)-(c) applies.

Metrics