Abstract

A nanoplasmonic optical filtering technique based on a complementary split-ring resonator structure is proposed. The basic and modal properties of the square-nanoring are studied using the group theory. Degeneracy and non-degeneracy of the possible TM odd- and even-modes are characterized based on the symmetry elements of the ring structure. Distinctively, the proposed technique allows selecting and exciting the proper plasmonic modes of the nanoring in the side-coupled arrangement. It is found that the non-integer modes can be excited due to the presence of a metallic nano-wall. These modes are highly sensitive to the nano-wall dimensions, in contrast to the regular integer modes. Moreover, the transmission-line theory is used to derive the resonance condition of the modes. The results show the optical transmission spectrum of the investigated filter can be efficiently modified and tuned either by manipulation of the position or by variation of the width of the employed nano-wall inside the ring. The numerical results support the theoretical analysis.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
    [CrossRef] [PubMed]
  4. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
    [CrossRef] [PubMed]
  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
    [CrossRef]
  6. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  7. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  8. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  10. H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
    [CrossRef]
  11. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]
  12. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  13. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
    [CrossRef] [PubMed]
  14. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010).
    [CrossRef] [PubMed]
  15. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
    [CrossRef]
  16. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27(12), 2707–2713 (2010).
    [CrossRef]
  17. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011).
    [CrossRef] [PubMed]
  18. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [CrossRef] [PubMed]
  19. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
    [CrossRef] [PubMed]
  20. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [CrossRef] [PubMed]
  21. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
    [CrossRef]
  22. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
    [CrossRef] [PubMed]
  23. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009).
    [CrossRef] [PubMed]
  24. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [CrossRef] [PubMed]
  25. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
    [CrossRef]
  26. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
    [CrossRef]
  27. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
    [CrossRef] [PubMed]
  28. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
    [CrossRef] [PubMed]
  29. M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
    [CrossRef]
  30. Y. Dong and T. Itoh, “Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators for Miniaturized Diplexer Design,” IEEE Microw.Wireless Compon. Lett. 21(1), 10–12 (2011).
    [CrossRef]
  31. G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011).
    [CrossRef] [PubMed]
  32. S. F. A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd ed. (Wiley, 2007).
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005).
  34. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [CrossRef]
  35. R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press, 2001).
  36. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1998).
  37. A. Alu, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
    [CrossRef]

2011 (4)

2010 (7)

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010).
[CrossRef] [PubMed]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27(12), 2707–2713 (2010).
[CrossRef]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[CrossRef]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (7)

2007 (2)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

2006 (5)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

2005 (3)

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
[CrossRef]

Alu, A.

A. Alu, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Aznabet, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Beruete, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Chen, Z.

Corrigan, T. D.

Cui, A.

Cui, Y.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[CrossRef]

Deng, Q.

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
[CrossRef]

Dong, Y.

Y. Dong and T. Itoh, “Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators for Miniaturized Diplexer Design,” IEEE Microw.Wireless Compon. Lett. 21(1), 10–12 (2011).
[CrossRef]

Drew, H. D.

Du, C.

Duan, L.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

El Mrabet, O.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Engheta, N.

A. Alu, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[CrossRef]

Essaaidi, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Falcone, F.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Fang, G.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Fukui, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Gao, H.

Giessen, H.

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
[CrossRef]

Gong, Y. K.

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Guang, X.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Han, Z.

Han, Z. H.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Haraguchi, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

He, S.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Herman, W. N.

Ho, P. T.

Holmgaard, T.

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Hu, F.

Hu, G.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[CrossRef]

Huang, J.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Huang, X.

Huang, X. G.

Itoh, T.

Y. Dong and T. Itoh, “Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators for Miniaturized Diplexer Design,” IEEE Microw.Wireless Compon. Lett. 21(1), 10–12 (2011).
[CrossRef]

Jin, X.

Kolb, P. W.

Kumar, G.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lederer, F.

Lin, X.

Lin, X. S.

Liu, J.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

Liu, L.

Liu, S.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

Liu, X.

Liu, X. M.

Lu, H.

Luo, X.

Lv, Y.

Mao, D.

Markey, L.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Matsuzaki, Y.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Mei, X.

Meyrath, T. P.

Nahata, A.

Nakagaki, M.

Navarro-Cía, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Okamoto, T.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pandey, S.

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
[CrossRef]

Phaneuf, R. J.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Qiu, M.

Rockstuhl, C.

Schmadel, D. C.

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Shi, H.

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Sorolla, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

Sushkov, A. B.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Tao, J.

Van, V.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, C.

Wang, G.

Wang, H. Z.

Wang, L. R.

Wang, T. B.

Wen, X. W.

Xiao, S. S.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Yao, H.

Yi, H.

Yin, C. P.

Young, M.

A. Alu, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[CrossRef]

Yun, B.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[CrossRef]

Zentgraf, T.

Zhang, Q.

Zhang, Y.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

Zhao, H.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Zhou, Z.

Zhu, J.

Zhu, J. H.

Zhu, Y.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultraslow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

IEEE Microw.Wireless Compon. Lett. (1)

Y. Dong and T. Itoh, “Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators for Miniaturized Diplexer Design,” IEEE Microw.Wireless Compon. Lett. 21(1), 10–12 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[CrossRef]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010).
[CrossRef]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

New J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11(10), 103020 (2009).
[CrossRef]

Opt. Express (14)

G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011).
[CrossRef] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011).
[CrossRef] [PubMed]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[CrossRef] [PubMed]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
[CrossRef] [PubMed]

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
[CrossRef] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010).
[CrossRef] [PubMed]

H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

A. Alu, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Physica E (1)

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (4)

R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press, 2001).

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1998).

S. F. A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd ed. (Wiley, 2007).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed 2D plasmonic filter based on the CSRR structure including a metallic nano-wall placed in the position of (a) P1, (b) P2, and (c) P3.

Fig. 2
Fig. 2

(a) Schematics of the isolated CSRRs with their symmetry plane (AA') for the nano-wall placed in the middle of the face and corner. (b) The transmission-line model of the CSRR.

Fig. 3
Fig. 3

Transmission spectrum of the filter comprises a regular square ring with L = 300 nm (a), and the spectra of the proposed CSRR filter with a nano-wall placed in position P1 (b), P2 (c), and P3 (d), calculated using the FDTD method. In all cases w = 20 nm. The magnetic-field distributions at the resonance wavelengths are shown as insets.

Fig. 4
Fig. 4

Variations of the resonance wavelenghts of the CSRR versus the width of the wall, w, for the corresponding low-order integer and non-integer modes: (a) TM1, (b) TM1.5, (c) TM2, and (d) TM2.5, calculated by the FDTD method and the transmission-line theory.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tan h ( γ i d 2 ) = ε i γ m ε m γ i
Δ ω / ω 0 ( Δ W m Δ W e ) / W
Z L = Z R = Z 0 2 Z w a l l + i Z 0 tan ( β L e f f / 2 ) Z 0 + i 2 Z w a l l tan ( β L e f f / 2 )

Metrics