Abstract

By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S1/2 (F = 3) - 6P3/2 (F’ = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S1/2 (F = 4) - 6P3/2 (F’ = 5) cooling cycle transition with −12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
    [CrossRef] [PubMed]
  2. Z. Hu and H. J. Kimble, “Observation of a single atom in a magneto-optical trap,” Opt. Lett. 19(22), 1888–1890 (1994).
    [CrossRef] [PubMed]
  3. J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).
  4. J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
    [CrossRef]
  5. C. J. Myatt, N. R. Newbury, and C. E. Wieman, “Simplified atom trap by using direct microwave modulation of a diode laser,” Opt. Lett. 18(8), 649–651 (1993).
    [CrossRef] [PubMed]
  6. P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63(10), 905–908 (1995).
    [CrossRef]
  7. F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
    [CrossRef]
  8. J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
    [CrossRef]
  9. W. L. Chen, X. H. Qi, L. Yi, K. Deng, Z. Wang, J. B. Chen, and X. Z. Chen, “Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser,” Opt. Lett. 33, 357–359 (2008).
    [CrossRef] [PubMed]
  10. R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
    [CrossRef]
  11. S. E. Park, T. Y. Kwon, and H. S. Lee; “Production of Raman laser beams using injection-locking technique,” IEEE Trans. Instrum. Meas. 52(2), 277–279 (2003).
    [CrossRef]
  12. B. E. Unks, N. A. Proite, and D. D. Yavuz, “Generation of high-power laser light with Gigahertz splitting,” Rev. Sci. Instrum. 78(8), 083108 (2007).
    [CrossRef] [PubMed]
  13. D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
    [CrossRef] [PubMed]
  14. M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
    [CrossRef]
  15. M. J. Snadden, R. B. M. Clarke, and E. Riis, “Injection-locking technique for heterodyne optical phase locking of a diode laser,” Opt. Lett. 22(12), 892–894 (1997).
    [CrossRef] [PubMed]
  16. R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
    [CrossRef]
  17. K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
    [CrossRef]
  18. P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, “Simple and effective modulation of diode lasers,” Laser Phys. 11, 891–896 (2001).

2011

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[CrossRef]

2009

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

2008

2007

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

B. E. Unks, N. A. Proite, and D. D. Yavuz, “Generation of high-power laser light with Gigahertz splitting,” Rev. Sci. Instrum. 78(8), 083108 (2007).
[CrossRef] [PubMed]

2006

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

2003

S. E. Park, T. Y. Kwon, and H. S. Lee; “Production of Raman laser beams using injection-locking technique,” IEEE Trans. Instrum. Meas. 52(2), 277–279 (2003).
[CrossRef]

2001

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, “Simple and effective modulation of diode lasers,” Laser Phys. 11, 891–896 (2001).

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
[CrossRef]

1999

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
[CrossRef]

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[CrossRef]

1997

1995

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63(10), 905–908 (1995).
[CrossRef]

1994

1993

1990

C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Balykin, V. I.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, “Simple and effective modulation of diode lasers,” Laser Phys. 11, 891–896 (2001).

Beugnon, J.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Bidel, Y.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

Boussen, S.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

Bresson, A.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

Browaeys, A.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Carraz, O.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

Chen, J. B.

Chen, W. L.

Chen, X. Z.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

W. L. Chen, X. H. Qi, L. Yi, K. Deng, Z. Wang, J. B. Chen, and X. Z. Chen, “Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser,” Opt. Lett. 33, 357–359 (2008).
[CrossRef] [PubMed]

Cheng, Y. J.

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

Clarke, R. B. M.

Deng, K.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

W. L. Chen, X. H. Qi, L. Yi, K. Deng, Z. Wang, J. B. Chen, and X. Z. Chen, “Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser,” Opt. Lett. 33, 357–359 (2008).
[CrossRef] [PubMed]

Feng, P.

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63(10), 905–908 (1995).
[CrossRef]

Gaetan, A.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Garreau, J. C.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
[CrossRef]

Gensemer, S. D.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
[CrossRef]

Gould, P. L.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
[CrossRef]

Grangier, P.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Guo, D. Z.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

Guo, T.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

He, J.

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[CrossRef]

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

Henage, T.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Hu, Z.

Johnson, T. A.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Jones, M. P. A.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Kimble, H. J.

Kowalski, R.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
[CrossRef]

Kulatunga, P. B.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Kwon, T. Y.

S. E. Park, T. Y. Kwon, and H. S. Lee; “Production of Raman laser beams using injection-locking technique,” IEEE Trans. Instrum. Meas. 52(2), 277–279 (2003).
[CrossRef]

Lecoq, Y.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
[CrossRef]

Lee, H. S.

S. E. Park, T. Y. Kwon, and H. S. Lee; “Production of Raman laser beams using injection-locking technique,” IEEE Trans. Instrum. Meas. 52(2), 277–279 (2003).
[CrossRef]

Lienhart, F.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

Liu, L.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

Liu, X. Y.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

Melentiev, P. N.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, “Simple and effective modulation of diode lasers,” Laser Phys. 11, 891–896 (2001).

Messin, G.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Myatt, C. J.

Nagel, A.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[CrossRef]

Newbury, N. R.

Park, S. E.

S. E. Park, T. Y. Kwon, and H. S. Lee; “Production of Raman laser beams using injection-locking technique,” IEEE Trans. Instrum. Meas. 52(2), 277–279 (2003).
[CrossRef]

Proite, N.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Proite, N. A.

B. E. Unks, N. A. Proite, and D. D. Yavuz, “Generation of high-power laser light with Gigahertz splitting,” Rev. Sci. Instrum. 78(8), 083108 (2007).
[CrossRef] [PubMed]

Qi, X. H.

Riis, E.

Ringot, J.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
[CrossRef]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Root, S.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
[CrossRef]

Saffman, M.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Snadden, M. J.

Su, J.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

Subbotin, M. V.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, “Simple and effective modulation of diode lasers,” Laser Phys. 11, 891–896 (2001).

Swann, W.

C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Szriftgiser, P.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
[CrossRef]

Unks, B. E.

B. E. Unks, N. A. Proite, and D. D. Yavuz, “Generation of high-power laser light with Gigahertz splitting,” Rev. Sci. Instrum. 78(8), 083108 (2007).
[CrossRef] [PubMed]

Urban, E.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Walker, T.

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63(10), 905–908 (1995).
[CrossRef]

Walker, T. G.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Wang, J. M.

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[CrossRef]

Wang, Z.

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

W. L. Chen, X. H. Qi, L. Yi, K. Deng, Z. Wang, J. B. Chen, and X. Z. Chen, “Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser,” Opt. Lett. 33, 357–359 (2008).
[CrossRef] [PubMed]

Wieman, C. E.

C. J. Myatt, N. R. Newbury, and C. E. Wieman, “Simplified atom trap by using direct microwave modulation of a diode laser,” Opt. Lett. 18(8), 649–651 (1993).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Wynands, R.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[CrossRef]

Yang, B. D.

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[CrossRef]

Yavuz, D. D.

B. E. Unks, N. A. Proite, and D. D. Yavuz, “Generation of high-power laser light with Gigahertz splitting,” Rev. Sci. Instrum. 78(8), 083108 (2007).
[CrossRef] [PubMed]

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

Yi, L.

Zahzam, N.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

Zhang, J. X.

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Zhang, T. C.

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[CrossRef]

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

Am. J. Phys.

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63(10), 905–908 (1995).
[CrossRef]

Appl. Phys. B

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2-3), 177–180 (2007).
[CrossRef]

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68(1), 1–25 (1999).
[CrossRef]

Eur. Phys. J. D

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7(3), 285–288 (1999).
[CrossRef]

Fron. Phys. China

J. He, B. D. Yang, Y. J. Cheng, T. C. Zhang, and J. M. Wang, “Improvement of the trapping lifetime for a single atom in a far-off-resonance optical dipole trap,” Fron. Phys. China 6, 262–270 (2011).

IEEE Trans. Instrum. Meas.

S. E. Park, T. Y. Kwon, and H. S. Lee; “Production of Raman laser beams using injection-locking technique,” IEEE Trans. Instrum. Meas. 52(2), 277–279 (2003).
[CrossRef]

J. Phys. D Appl. Phys.

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of a single-atom magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[CrossRef]

Laser Phys.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, “Simple and effective modulation of diode lasers,” Laser Phys. 11, 891–896 (2001).

Opt. Lett.

Phys. Lett. A

K. Deng, T. Guo, J. Su, D. Z. Guo, X. Y. Liu, L. Liu, X. Z. Chen, and Z. Wang, “Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks,” Phys. Lett. A 373(12-13), 1130–1132 (2009).
[CrossRef]

Phys. Rev. A

M. P. A. Jones, J. Beugnon, A. Gaetan, J. X. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75(4), 040301 (2007).
[CrossRef]

Phys. Rev. Lett.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96(6), 063001 (2006).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

B. E. Unks, N. A. Proite, and D. D. Yavuz, “Generation of high-power laser light with Gigahertz splitting,” Rev. Sci. Instrum. 78(8), 083108 (2007).
[CrossRef] [PubMed]

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72(6), 2532–2534 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for our optical-injection-locking scheme. Keys to the figure: ECDL: grating extended-cavity diode laser; OI: optical isolator; Cs-SAS: cesium saturation-absorption spectroscopic device; BS: beam splitter plate; PBS: polarization beam splitter cube; RF: radio frequency signal; λ/2: half-wave plate; s: s polarization; p: p polarization.

Fig. 2
Fig. 2

Influence of the power of the injected beam on the injection locking range of the slave laser when the + 1-order sideband is injection locked by the master laser. (a) The SAS of the slave laser at difference injection beam power. (b) The injection locking range data derived from Fig. 2(a) vs the injected beam’s power.

Fig. 3
Fig. 3

Influence of the power of the RF modulation signal on the proportion of the + 1 sideband and the injection locking range of the slave laser when the + 1-order sideband is injection locked. The proportion of + 1 sideband (red circles) and the injection locking range (blue squares) are increased with the RF power.

Fig. 4
Fig. 4

SAS signals for both the master and slave lasers. The slave laser is directly modulated at 8.953613177 GHz. When the master laser used for the repumping laser of Cs MOT is scanned to the Cs F = 3 - F’ = 4 transition, the carrier of the slave laser with the + 1-order sideband injection locked used for the cooling/trapping laser of Cs MOT now is detuned by −12 MHz relative to the Cs F = 4 - F’ = 5 cooling cycle transition.

Fig. 5
Fig. 5

Typical LIF photon-counting signals for individual Cs atoms trapped in our large-magnetic-gradient MOT under optimized conditions. The three LIF photon-counting levels of C0, C1 and C2, indicate no atom, one atom and two atoms are trapped in the MOT, respectively. The time bin is set to 50 ms.

Fig. 6
Fig. 6

The slave laser is modulated at 9.192613177 GHz. When the master laser is scanned to the Cs F = 3 - F’ = 3(4) transition, and the carrier of the slave laser with the + 1-order sideband injection locked is exactly resonated to the Cs F = 4 - F’ = 3(4) transition.

Fig. 7
Fig. 7

Beat-note signal at 9.293 GHz measured by using a fast photodiode and the RF spectrum analyzer (Agilent E4405B) which is set as follows: the frequency span is 100 Hz, and the resolution bandwidth (RBW) and the video bandwidth (VBW) are both 1 Hz.

Metrics