Abstract

The purpose of this study is to reduce the glass substrate reflectivity over a wide spectral range (400-1200nm) without having high reflectivity in the near-infrared region. After making porous SiO2/MgF2 double-layer antireflection (DLAR) thin film structure, the superstrate-type silicon-based tandem cells are added. In comparison to having only silicon-based tandem solar cells, the short-circuit current density has improved by 6.82% when porous SiO2/MgF2 DLAR thin film is applied to silicon-based tandem solar cells. This study has demonstrated that porous SiO2/MgF2 DLAR thin film structure provides antireflection properties over a broad spectral range (400-1200nm) without having high reflectivity at near-infrared wavelengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
    [CrossRef]
  2. T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
    [CrossRef]
  3. T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
    [CrossRef]
  4. K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
    [CrossRef]
  5. M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
    [CrossRef]
  6. K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
    [CrossRef]
  7. Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
    [CrossRef]
  8. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
    [CrossRef]
  9. N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
    [CrossRef]
  10. P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
    [CrossRef] [PubMed]
  11. M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells 94(6), 1055–1058 (2010).
    [CrossRef]
  12. A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells 94(6), 992–997 (2010).
    [CrossRef]
  13. C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
    [CrossRef]
  14. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
    [CrossRef]
  15. Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
    [CrossRef]
  16. H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1-4), 71–77 (2001).
    [CrossRef]
  17. Y. Zheng, K. Kikuchi, M. Yamasaki, K. Sonoi, and K. Uehara, “Two-layer wideband antireflection coatings with an absorbing layer,” Appl. Opt. 36(25), 6335–6338 (1997).
    [CrossRef] [PubMed]
  18. S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys. 96(11), 6766–6771 (2004).
    [CrossRef]
  19. J. T. Cox, G. Hass, and A. Thelen, “Triple-layer antireflection coatings on glass for the visible and near infrared,” J. Opt. Soc. Am. 52(9), 965–969 (1962).
    [CrossRef]
  20. M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).
  21. U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
    [CrossRef] [PubMed]
  22. Y. Ohtera, D. Kurniatan, and H. Yamada, “Antireflection coatings for multilayer-type photonic crystals,” Opt. Express 18(12), 12249–12261 (2010).
    [CrossRef] [PubMed]
  23. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980).
    [CrossRef]
  24. Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
    [CrossRef]
  25. O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys. 28, 139–144 (2004).
  26. H. Ishizawa, S. Niisaka, T. Murata, and A. Tanaka, “Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process,” Appl. Opt. 47(13), C200–C205 (2008).
    [CrossRef] [PubMed]
  27. H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl. 7(4), 245–260 (1999).
    [CrossRef]
  28. I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids 212(2-3), 225–231 (1997).
    [CrossRef]
  29. Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
    [CrossRef]

2011

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

2010

M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells 94(6), 1055–1058 (2010).
[CrossRef]

A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells 94(6), 992–997 (2010).
[CrossRef]

Y. Ohtera, D. Kurniatan, and H. Yamada, “Antireflection coatings for multilayer-type photonic crystals,” Opt. Express 18(12), 12249–12261 (2010).
[CrossRef] [PubMed]

2009

U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
[CrossRef] [PubMed]

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

2008

Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
[CrossRef]

H. Ishizawa, S. Niisaka, T. Murata, and A. Tanaka, “Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process,” Appl. Opt. 47(13), C200–C205 (2008).
[CrossRef] [PubMed]

2007

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

2005

M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).

2004

O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys. 28, 139–144 (2004).

S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys. 96(11), 6766–6771 (2004).
[CrossRef]

C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
[CrossRef]

2002

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

2001

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1-4), 71–77 (2001).
[CrossRef]

2000

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

1999

H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl. 7(4), 245–260 (1999).
[CrossRef]

Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
[CrossRef]

1997

I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids 212(2-3), 225–231 (1997).
[CrossRef]

Y. Zheng, K. Kikuchi, M. Yamasaki, K. Sonoi, and K. Uehara, “Two-layer wideband antireflection coatings with an absorbing layer,” Appl. Opt. 36(25), 6335–6338 (1997).
[CrossRef] [PubMed]

1980

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980).
[CrossRef]

1962

Aberle, A. G.

H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl. 7(4), 245–260 (1999).
[CrossRef]

Alayo, M. I.

I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids 212(2-3), 225–231 (1997).
[CrossRef]

Asghar, M. H.

M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).

Bae, B. J.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Bae, D. S.

S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys. 96(11), 6766–6771 (2004).
[CrossRef]

Ballif, C.

C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
[CrossRef]

Bilger, G.

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

Borchert, D.

C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
[CrossRef]

Brammer, T.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Burgardt, P.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Carman, M. R.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Chen, L.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Chigane, M.

M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells 94(6), 1055–1058 (2010).
[CrossRef]

Choi, K. W.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Cox, J. T.

Deng, Z.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Dicker, J.

C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
[CrossRef]

Djurisic, A. B.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Durusoy, H. Z.

O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys. 28, 139–144 (2004).

Duyar, O.

O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys. 28, 139–144 (2004).

Elkasabi, Y.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Fan, B.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Fujishima, A.

Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
[CrossRef]

Guo, Q.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Han, K. S.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Hass, G.

Hatanaka, Y.

M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells 94(6), 1055–1058 (2010).
[CrossRef]

Haug, F. J.

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

Hezel, R.

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1-4), 71–77 (2001).
[CrossRef]

H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl. 7(4), 245–260 (1999).
[CrossRef]

Hofmann, T.

C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
[CrossRef]

Hong, E. J.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Hong, S. H.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Ishizawa, H.

Jaing, C. C.

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

Jiang, B.

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Jiang, P.

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Jonson, E. K.

A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells 94(6), 992–997 (2010).
[CrossRef]

Jonsson, A.

A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells 94(6), 992–997 (2010).
[CrossRef]

Khan, M. B.

M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).

Khan, Z. A.

M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).

Kieffer, J.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Kikuchi, K.

Kim, S. W.

S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys. 96(11), 6766–6771 (2004).
[CrossRef]

Kluth, O.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Kotov, N. A.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Kuo, C. C.

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

Kuo, H. C.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Kurniatan, D.

Kusumaatmaja, W.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Kwong, C. Y.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Lahann, J.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Lee, H.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Lee, J.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Linn, N. C.

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Liou, Y. Y.

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

Liu, C. C.

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

Liu, W. C.

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

Liu, Y.

Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
[CrossRef]

Liu, Z.

Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980).
[CrossRef]

Luk, W. C.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Metz, A.

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1-4), 71–77 (2001).
[CrossRef]

Milam, D.

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980).
[CrossRef]

Miryala, A.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Murakami, T.

Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
[CrossRef]

Murata, T.

Nagel, H.

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1-4), 71–77 (2001).
[CrossRef]

H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl. 7(4), 245–260 (1999).
[CrossRef]

Naseem, S.

M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).

Ng, A. M. C.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Nguyen, Q.

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

Niisaka, S.

Ohtera, Y.

Orgassa, K.

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

Pereyra, I.

I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids 212(2-3), 225–231 (1997).
[CrossRef]

Podsiadlo, P.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Rau, U.

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

Rech, B.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Reetz, W.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Ren, W.

Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
[CrossRef]

Roos, A.

A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells 94(6), 992–997 (2010).
[CrossRef]

Rudmann, D.

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

Schock, H. W.

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

Schulz, U.

Senoussaoui, N.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Shen, J.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Shin, H.

S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys. 96(11), 6766–6771 (2004).
[CrossRef]

Shinagawa, T.

M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells 94(6), 1055–1058 (2010).
[CrossRef]

Shtein, M.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Sonoi, K.

Stiebig, H.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Sui, L.

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Sun, C. H.

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Tam, K. C.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Tanaka, A.

Tao, M.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Thelen, A.

Tiwari, A. N.

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

Tsai, M. A.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Uehara, K.

Vetterl, O.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Wagner, H.

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

Wang, J.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Wang, Y.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Werner, J. H.

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

Wu, G.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Yamada, H.

Yamasaki, M.

Yang, H.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Yang, T.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Yao, X.

Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
[CrossRef]

Yeung, K. M.

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Zhang, F.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Zhang, L.

Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
[CrossRef]

Zhang, Q.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Zhang, X.

Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
[CrossRef]

Zheng, Y.

Zhou, B.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Zhou, D.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Zhou, W.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Zogg, H.

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Electron. Mater. Lett.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

J. Appl. Phys.

S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys. 96(11), 6766–6771 (2004).
[CrossRef]

J. Non-Cryst. Solids

I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids 212(2-3), 225–231 (1997).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys. 46(8A), 5143–5147 (2007).
[CrossRef]

Langmuir

P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir 23(15), 7901–7906 (2007).
[CrossRef] [PubMed]

Mater. Sci. Eng. B

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Opt. Express

Prog. Photovolt. Res. Appl.

H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt. Res. Appl. 7(4), 245–260 (1999).
[CrossRef]

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 10(7), 457–463 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells 74(1-4), 469–478 (2002).
[CrossRef]

M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells 94(6), 1055–1058 (2010).
[CrossRef]

A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells 94(6), 992–997 (2010).
[CrossRef]

C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004).
[CrossRef]

Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells 92(11), 1434–1438 (2008).
[CrossRef]

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1-4), 71–77 (2001).
[CrossRef]

K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells 95(2), 699–703 (2011).
[CrossRef]

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Thin Solid Films

F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films 403-404, 293–296 (2002).
[CrossRef]

Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films 353(1-2), 124–128 (1999).
[CrossRef]

Turk. J. Phys.

O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys. 28, 139–144 (2004).

M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys. 29, 43–53 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the structure of Si-based tandem cells with porous SiO2/MgF2 DLAR coating (n = refractive index, d = thickness).

Fig. 2
Fig. 2

Deposition rate and refractive index of MgF2 thin films at the various working pressures. A working pressure of 5 mtorr is needed to obtain the optimal refractive index of 1.38.

Fig. 3
Fig. 3

Thickness and refractive index of porous SiO2 thin films at various spin coating layer numbers. The optimal deposition condition occurs at the sixth dip/spin layer with a refractive index of 1.23 and a thickness of approximately 111.8 nm.

Fig. 4
Fig. 4

SEM images of (a) top and (b) cross- sectionals of experimental porous SiO2 thin films. The reflective index of porous SiO2 thin film is 1.21 and the sample is prepared with a sol-gel at the sixth dip/spin layer.

Fig. 5
Fig. 5

Measured infrared absorbance spectrum of porous SiO2 thin films. The reflective index of porous SiO2 thin film is 1.21 and the thickness of porous SiO2 is 124 nm. The Gauss is used for fitting the open-link. The porous SiO2 thin film was deposited on silicon substrate.

Fig. 6
Fig. 6

Comparison of external quantum efficiency (EQE) of Si-based tandem cells with and without porous SiO2/MgF2 DLAR coating.

Fig. 7
Fig. 7

Comparison of reflection spectra of the uncoated glass substrate, the DLAR coating (theory), the porous SiO2/MgF2 DLAR coating (our sample), DLAR coating [19], and multi-layer AR coating [19]. The refractive index of the glass substrate is n = 1.517. (n = refractive index of thin film, d = thickness of thin film).

Tables (1)

Tables Icon

Table 1 Comparison of I–V Characteristics of Si-based Tandem Cells with and without Porous SiO2/MgF2 DLAR Coating (Voc = open-circuit voltage, Jsc = short-circuit current density, FF = fill factor, η = efficiency)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ B C ] = [ cos δ t o p i n t o p sin δ t o p i n t o p sin δ t o p cos δ t o p ] [ cos δ b o t i n b o t sin δ b o t i n b o t sin δ b o t cos δ b o t ] [ 1 n g l a s s ] ,
R = ( n t o p 2 n g l a s s n b o t 2 n 0 n t o p 2 n g l a s s + n b o t 2 n 0 ) 2 ,
n t o p 2 = n 0 n b o t 2 n g l a s s ,
d t o p = λ 0 4 n t o p a n d d b o t = λ 0 4 n b o t .
J s c = q λ 2 λ 1 F ( λ ) E Q E ( λ ) d λ ,

Metrics