Abstract

Twin-hole fibers were thermally poled with different internal electrode configurations, including having only one anode wire in the hole, two anode wires in the two holes, one cathode wire, and two cathode wires in the holes, in comparison to the conventional one anode wire and one cathode wire combination. Second harmonic microscopy was utilized to visually reveal the spatial distribution and to measure the magnitude of the induced second-order optical nonlinearity within the poled fibers. It was found that both one- and two-anode configurations resulted in strong nonlinearity comparable with the conventional case but the two-anode configuration was more reproducible than the one-anode case; for the one-cathode-wire and two-cathode-wire configuration, strong nonlinearity in a ring shape concentric with the fiber outer surface was induced as if the cathode metal wire were in the center of the twin-hole fiber rather than substantially offset. These new results provide strong support for the proposed model of a “self-adjustment” mechanism and point the way to simplified and more repeatable experimental techniques.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996).
    [CrossRef] [PubMed]
  3. T. G. Alley and S. R. J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998).
    [CrossRef] [PubMed]
  4. D. Pureur, A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Absolute measurement of the second-order nonlinearity profile in poled silica,” Opt. Lett. 23(8), 588–590 (1998).
    [CrossRef] [PubMed]
  5. P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
    [CrossRef] [PubMed]
  6. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
    [CrossRef]
  7. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
    [CrossRef]
  8. W. T. Li, H. An, and S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008).
    [CrossRef]
  9. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
    [CrossRef]
  10. S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, “Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide,” Opt. Express 13(18), 7091–7096 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7091 .
    [CrossRef] [PubMed]
  11. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
    [CrossRef] [PubMed]
  12. M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
    [CrossRef]
  13. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
    [CrossRef] [PubMed]
  14. L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34(14), 2138–2140 (2009).
    [CrossRef] [PubMed]
  15. P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
    [CrossRef]
  16. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
    [CrossRef]
  17. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6093 .
    [CrossRef] [PubMed]
  18. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15534 .
    [CrossRef] [PubMed]
  19. W. Margulis, F. Laurell, and B. Leschel, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
    [CrossRef]
  20. H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
    [CrossRef]
  21. D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
    [CrossRef]
  22. H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
    [CrossRef]
  23. H. An and S. Fleming, “Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes,” Electron. Lett. 43(4), 206–207 (2007).
    [CrossRef]
  24. Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
    [CrossRef]
  25. H. An and S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89(18), 181111 (2006).
    [CrossRef]

2009 (3)

2008 (1)

W. T. Li, H. An, and S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008).
[CrossRef]

2007 (1)

H. An and S. Fleming, “Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes,” Electron. Lett. 43(4), 206–207 (2007).
[CrossRef]

2006 (1)

H. An and S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89(18), 181111 (2006).
[CrossRef]

2005 (2)

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, “Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide,” Opt. Express 13(18), 7091–7096 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7091 .
[CrossRef] [PubMed]

2004 (2)

2002 (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

2001 (1)

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

2000 (1)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

1999 (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

1998 (3)

1996 (2)

W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996).
[CrossRef] [PubMed]

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

1995 (1)

W. Margulis, F. Laurell, and B. Leschel, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[CrossRef]

1994 (4)

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
[CrossRef]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
[CrossRef] [PubMed]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

1991 (1)

Abe, M.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

Alley, T. G.

T. G. Alley and S. R. J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998).
[CrossRef] [PubMed]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

An, H.

W. T. Li, H. An, and S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008).
[CrossRef]

H. An and S. Fleming, “Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes,” Electron. Lett. 43(4), 206–207 (2007).
[CrossRef]

H. An and S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89(18), 181111 (2006).
[CrossRef]

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[CrossRef]

Arentoft, J.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

Bonfrate, G.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

Bozhevolnyi, S. I.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

Brueck, S. R. J.

Busacca, A.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

Canagasabey, A.

Chao, S.

Chen, H.-Y.

Corbari, C.

Cox, G.

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[CrossRef]

Dianov, E. M.

Digonnet, M. J. F.

Dong, L.

Faccio, D.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

Fleming, S.

W. T. Li, H. An, and S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008).
[CrossRef]

H. An and S. Fleming, “Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes,” Electron. Lett. 43(4), 206–207 (2007).
[CrossRef]

H. An and S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89(18), 181111 (2006).
[CrossRef]

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[CrossRef]

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Gladyshev, A. V.

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Guillemet, S.

Harwood, D. W. J.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

Hattori, K.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

Helander, P.

Helt, L. G.

Hernandez, Y.

Himeno, A.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

Ibsen, M.

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Kashyap, R.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
[CrossRef]

Kazansky, P. G.

A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
[CrossRef] [PubMed]

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Kino, G. S.

Kitagawa, T.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

Kosolapov, A.

Kristensen, M.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Laurell, F.

W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996).
[CrossRef] [PubMed]

W. Margulis, F. Laurell, and B. Leschel, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[CrossRef]

Leschel, B.

W. Margulis, F. Laurell, and B. Leschel, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[CrossRef]

Li, W. T.

W. T. Li, H. An, and S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008).
[CrossRef]

Liegeois, F.

Liscidini, M.

Liu, A. C.

Lo, K. M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Margulis, W.

McKee, P. F.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
[CrossRef]

Mukherjee, N.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Myrén, N.

Niu, H.

Norin, L.

Ohmori, Y.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

Olsson, H.

Pedersen, K.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

Pruneri, V.

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

Pureur, D.

Qian, L.

Quiquempois, Y.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Rogers, D. C.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Shi, P.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

Shih, C. T.

Sipe, J. E.

Sjödin, N.

Svennebrink, J.

Tarasenko, O.

Veldhuis, G. J.

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
[CrossRef]

Wang, Z.-W.

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Yang, Y.-H.

Yashkov, M. V.

Zhu, E. Y.

Appl. Phys. Lett. (4)

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. McKee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64(11), 1332–1334 (1994).
[CrossRef]

H. An, S. Fleming, and G. Cox, “Visualization of second-order nonlinear layer in thermally poled fused silica glass,” Appl. Phys. Lett. 85(24), 5819–5821 (2004).
[CrossRef]

H. An and S. Fleming, “Second-order optical nonlinearity in thermally poled borosilicate glass,” Appl. Phys. Lett. 89(18), 181111 (2006).
[CrossRef]

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

Electron. Lett. (4)

H. An and S. Fleming, “Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes,” Electron. Lett. 43(4), 206–207 (2007).
[CrossRef]

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electron. Lett. 32(10), 893–894 (1996).
[CrossRef]

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver-containing electrodes,” Electron. Lett. 36(19), 1635–1636 (2000).
[CrossRef]

W. T. Li, H. An, and S. Fleming, “Second-order optical nonlinearity in thermally poled multilayer germanosilicate thin films,” Electron. Lett. 44(10), 639–641 (2008).
[CrossRef]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

Nature (1)

W. Margulis, F. Laurell, and B. Leschel, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[CrossRef]

Opt. Commun. (2)

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides,” Opt. Commun. 196(1-6), 187–190 (2001).
[CrossRef]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Opt. Lett. (8)

L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34(14), 2138–2140 (2009).
[CrossRef] [PubMed]

A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
[CrossRef] [PubMed]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
[CrossRef] [PubMed]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

D. Pureur, A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Absolute measurement of the second-order nonlinearity profile in poled silica,” Opt. Lett. 23(8), 588–590 (1998).
[CrossRef] [PubMed]

T. G. Alley and S. R. J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23(15), 1170–1172 (1998).
[CrossRef] [PubMed]

W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996).
[CrossRef] [PubMed]

Phys. Rev. A (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical SH microscopy micrographs of fibers poled for 40 min with the conventional anode-cathode configuration. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b). Scale in (c) applies to all micrographs.

Fig. 2
Fig. 2

Typical SH microscopy micrographs of fibers poled for 40 min with the single-anode configuration.(a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 3
Fig. 3

SH microscopy micrographs of fibers poled for 40 min with the single-anode configuration where the χ(2) layer did not reach the fiber core. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 4
Fig. 4

Typical SH microscopy micrographs of fibers poled for 40 min with the anode-anode configuration. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 5
Fig. 5

Typical SH microscopy micrographs of fibers poled with the anode-anode configuration where the χ(2) rings around the two holes have not joined together. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 6
Fig. 6

Typical SH micrographs for fibers poled with a single cathode wire in the hole and with a grounded hot plate. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 7
Fig. 7

Typical SH micrographs for fibers poled with two cathode wires in the holes and with the hot plate grounded. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 8
Fig. 8

Distribution of initial poling electric field and voltage. (a) |E| contour profile over fiber cross section; (b) |E| and V profiles along the shortest line connecting the two holes.

Fig. 9
Fig. 9

Profiles of initial poling electric field along a circle 5 μm beneath fiber surface and 0.1 μm away from the left hole.

Fig. 10
Fig. 10

Typical SH micrographs of a D fiber poled with a cathode wire in the hole and the hot plate grounded. (a) Channel 1 image; (b) Channel 2 image; (c) overlay of (a) and (b).

Fig. 11
Fig. 11

Micrographs of a D fiber poled with a cathode wire in the hole and the hot plate grounded. (a) SH image; (b) SEM image.

Metrics