Abstract

Two high pulse contrast (> 95 dB) polarization maintaining all-fiber amplifier chains were coherently combined to generate 0.42 mJ, 1 ns 25 kHz pulses with 79% efficiency despite 38 radians of intra-pulse phase distortion. A recursive intra-pulse phase compensation method was utilized to correct for the large nonlinear chirp providing a path for improved coherent waveform control of nanosecond pulse trains.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Di Teodoro, High-Power Laser Handbook (McGraw-Hill, 2011), pp. 463–498.
  2. L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouën, and O. Vasseur, “Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime,” Opt. Lett. 36(4), 523–525 (2011).
    [CrossRef] [PubMed]
  3. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, “Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett. 36(5), 621–623 (2011).
    [CrossRef] [PubMed]
  4. X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
    [CrossRef]
  5. E. Seise, A. Klenke, S. Breitkopf, M. Plötner, J. Limpert, and A. Tünnermann, “Coherently combined fiber laser system delivering 120 μJ femtosecond pulses,” Opt. Lett. 36(4), 439–441 (2011).
    [CrossRef] [PubMed]
  6. E. C. Cheung, M. Weber, and R. R. Rice, “Phase locking of a pulsed fiber amplifier,” in Advanced Solid-State Photonics, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper WA2.
  7. C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38(24), 1578–1579 (2002).
    [CrossRef]
  8. J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems,” Opt. Lett. 31(11), 1756–1758 (2006).
    [CrossRef] [PubMed]
  9. G. Zhu, J. Edinberg, and C. Xu, “Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2pi,” Opt. Express 15(5), 2530–2534 (2007).
    [CrossRef] [PubMed]
  10. G. D. Goodno, C. C. Shih, and J. E. Rothenberg, “Perturbative analysis of coherent combining efficiency with mismatched lasers,” Opt. Express 18(24), 25403–25414 (2010).
    [CrossRef] [PubMed]
  11. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006).
    [CrossRef] [PubMed]
  12. A. Flores, T. M. Shay, C. A. Lu, C. Robin, B. Pulford, A. D. Sanchez, D. W. Hult, and K. B. Rowland, “Coherent beam combining of fiber amplifiers in a kW regime,” in CLEO:2011- Laser Applications to Photonic Applications, 2011 OSA Technical Digest Series (Optical Society of America, 2011), paper CFE3.
  13. T. M. Shay, “Self-reference locking of optical coherence by single-detector electronic-frequency tagging,” US Air Force, US Patent 7,233,433 (2007).
  14. L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett. 36(5), 734–736 (2011).
    [CrossRef] [PubMed]
  15. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011).
    [CrossRef] [PubMed]
  16. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15(10), 2745–2758 (1998).
    [CrossRef]
  17. W. F. Buell, N. J. Marechal, R. P. Dickinson, D. Kozlowski, T. J. Wright, J. R. Buck, and S. M. Beck, “Synthetic aperture imaging ladar: lab demo and signal processing,” Proceedings of the 2003 Military Sensing Symposia: Active EO Systems (2003).
  18. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]

2011

2010

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

G. D. Goodno, C. C. Shih, and J. E. Rothenberg, “Perturbative analysis of coherent combining efficiency with mismatched lasers,” Opt. Express 18(24), 25403–25414 (2010).
[CrossRef] [PubMed]

2007

2006

2002

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38(24), 1578–1579 (2002).
[CrossRef]

2000

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

1998

Augst, S. J.

Azarian, A.

Bigourd, D.

Bourdon, P.

Breitkopf, S.

Cadoret, K.

Canat, G.

Daniault, L.

Douay, M.

Druon, F.

Edinberg, J.

Fan, T. Y.

Georges, P.

Goldizen, K. C.

Goodno, G. D.

Goular, D.

Hanna, M.

Hugonnot, E.

Jaouën, Y.

Jolivet, V.

Klenke, A.

Lago, L.

Limpert, J.

Liu, X.

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38(24), 1578–1579 (2002).
[CrossRef]

Liu, Z. J.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Lombard, L.

Ma, H. T.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Ma, Y. X.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Mollenauer, L.

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38(24), 1578–1579 (2002).
[CrossRef]

Mottay, E.

Murphy, D. V.

Mussot, A.

Plötner, M.

Redmond, S. M.

Rothenberg, J. E.

Sanchez, A.

Seise, E.

Shay, T. M.

Shih, C. C.

Sivokon, V. P.

Tünnermann, A.

van Howe, J.

Vasseur, O.

Vorontsov, A.

Wang, X. L.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Weiner, A.

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Xu, C.

Xu, X. J.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Yu, C. X.

Zaouter, Y.

Zhao, Y. J.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Zhou, P.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Zhu, G.

Electron. Lett.

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38(24), 1578–1579 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Laser Phys.

X. L. Wang, P. Zhou, Y. X. Ma, H. T. Ma, X. J. Xu, Z. J. Liu, and Y. J. Zhao, “Coherent beam combining of pulsed fiber lasers with hybrid phase control,” Laser Phys. 20(6), 1453–1458 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Other

F. Di Teodoro, High-Power Laser Handbook (McGraw-Hill, 2011), pp. 463–498.

W. F. Buell, N. J. Marechal, R. P. Dickinson, D. Kozlowski, T. J. Wright, J. R. Buck, and S. M. Beck, “Synthetic aperture imaging ladar: lab demo and signal processing,” Proceedings of the 2003 Military Sensing Symposia: Active EO Systems (2003).

E. C. Cheung, M. Weber, and R. R. Rice, “Phase locking of a pulsed fiber amplifier,” in Advanced Solid-State Photonics, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper WA2.

A. Flores, T. M. Shay, C. A. Lu, C. Robin, B. Pulford, A. D. Sanchez, D. W. Hult, and K. B. Rowland, “Coherent beam combining of fiber amplifiers in a kW regime,” in CLEO:2011- Laser Applications to Photonic Applications, 2011 OSA Technical Digest Series (Optical Society of America, 2011), paper CFE3.

T. M. Shay, “Self-reference locking of optical coherence by single-detector electronic-frequency tagging,” US Air Force, US Patent 7,233,433 (2007).

Supplementary Material (5)

» Media 1: MPG (4335 KB)     
» Media 2: MPG (4075 KB)     
» Media 3: MPG (3826 KB)     
» Media 4: MPG (3958 KB)     
» Media 5: MPG (7398 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Block diagram for the pulsed fiber IPC-CBC architecture. Blue lines: In-fiber, Black lines: Electrical connections.

Fig. 2
Fig. 2

Schematic view of the pulsed fiber amplifier system and combining opto-electronic components. MO: Master Oscillator; PM: Polarization Maintaining ; YDFA: Ytterbium Doped Fiber Amplifier; MFA: Mode Field Adaptor; EO: Electro-Optic; AO: Acousto-Optic; AM: Amplitude Modulator; FM: Phase Modulator; PD: Photodiode; AWG: Arbitrary Waveform Generator; Blue lines: paths of optical signal propagating in fiber; Red lines: paths of free space optical beams; Yellow lines: paths of in-fiber, diode-produced pump beams. Black lines: Electrical connections.

Fig. 3
Fig. 3

Performance measurements for a single, multi-stage fiber amplifier chain (see text for details on the chain architecture) generating ~250 μJ pulse energy at 25 kHz PRF. (a) Pulsewidth, (b) Linewidth, (c) Output power (red: co-pumped, blue: counter-pumped), (d) Near-field intensity profile and beam quality measurement.

Fig. 4
Fig. 4

Schematic for heterodyne coherent leakage with CW reference piston phase control. MO: Master Oscillator; CW: Continuous Wave; RF: Radio Frequency; EO: Electro-Optic; AO: Acousto-Optic; DFB Fiber: Distributed Feedback Fiber Laser; PD: Photodiode. Red lines: Optical paths within the laser chains; Blue lines: Driving signals; Black lines: Detected signals.

Fig. 5
Fig. 5

Schematic for coherent leakage pulsed (CLP) LOCSET piston phase control. MO: Master Oscillator; CW: Continuous Wave; RF: Radio Frequency; EO: Electro-Optic; AO: Acousto-Optic; DFB: DFB Fiber: Distributed Feedback Fiber Laser; PD: Photodiode. Red lines: Optical paths within the laser chains; Blue lines: Driving signals; Black lines: Detected signals. In this scheme, the CW reference is not used for piston phase control.

Fig. 6
Fig. 6

Schematic for hill climbing piston phase control. MO: Master Oscillator; CW: Continuous Wave; RF: Radio Frequency; EO: Electro-Optic; AO: Acousto-Optic; DFB Fiber: Distributed Feedback Fiber Laser; PD: Photodiode. Red lines: Optical paths within the laser chains; Blue lines: Driving signals; Black lines: Detected signals. Similar to the case of CLP-LOCSET (see Fig. 5), the CW reference is not used for piston phase control in this scheme.

Fig. 7
Fig. 7

Piston phase locking experimental results (a) The AO pulse attenuator is used to reduce the contrast between the CW coherent leakage and pulse for the piston phase control electronics. (b) Two pulse moving average for the relative piston phase errors using the HC technique. (c) Phase locking demonstration using HCL-CWR showing the heterodyne signal modulated by the 40 MHz offset (see Media 1 and Media 2). (d) Phase modulation scheme utilized for CLP-LOCSET.

Fig. 8
Fig. 8

Combined spatial profiles for in-phase (a, Media 3) and out-of-phase (b, Media 4) piston locking using CLP-LOCSET (the in-phase/out-of-phase transition can viewed in Media 5). (c) Combining efficiency vs. total combined pulse energy.

Fig. 9
Fig. 9

Temporal intensity profiles for in-phase and out-of-phase terms at (a) 40 μJ/pulse per beam and (b) 250 μJ/pulse per beam. Purple trace: Time reference; TC: Temporal Coherence.

Fig. 10
Fig. 10

Simplified schematic for collection of the signals required for nonlinear chirp reconstruction. All three signals (S(t), I1(t) and Io(t)) were collected without altering the optical path by using an in-line variable fiber tap coupler. CW: Continuous Wave, EO: Electro-Optic, AO: Acousto-Optic, YDFA: Ytterbium Doped Fiber Amplifier, FWHM: Full Width at Half maximum, PD: Photodiode, GS: Giga-Samples, Ch: Channel, Mk: Marker.

Fig. 11
Fig. 11

Measured homodyne signals for (a) 40 uJ/pulse and (b) 250 uJ/pulse from the taper fiber amplifier system.

Fig. 12
Fig. 12

Method utilized to extract the intra-pulse chirp profile from the experimental measurements. (a) Representative experimental data for the homodyne S(t) and the intensity I(t) signals. Similar data sets were collected as a function of output pulse energy (b) Analytic fits of experimental signals to asymmetric Gaussian profile (green-upper SU(t) envelope fit, purple-lower SL(t) envelope fit, red- I(t) calculated from S(t)). (c) Extracted phase ϕ(t). (d) Stacked chirp profiles with potential paths and the best fit chirp profile (red). (e) Nonlinear chirp decomposed into PIP and SPM terms.

Fig. 13
Fig. 13

(a) Simplified schematic for validation (Θo(τ)) and implementation (Θi(τ)) for the IPC technique. (b) Recursive phase control generates a recirculating pulse to which a phase correction profile can be applied on each pass.

Fig. 14
Fig. 14

Measured homodyne signals using the output IPC method without (a) and with (b) the applied correction. Measured homodyne signals using the input IPC method without (c) and with (d) the applied correction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = cos 1 ( S ( t ) I 1 ( t ) I 0 ( t ) 2 I 1 ( t ) I 0 ( t ) )

Metrics