Abstract

We demonstrate high-frequency Q-switching of a fiber rod laser with a Single-Crystal Photo-Elastic Modulator (SCPEM) made of a LiTaO3-crystal. This type of photo-elastic modulator can be driven simultaneously with two different eigenmodes to achieve a shorter rise time, which is essential for high-power operation. When operated in the laser cavity, a pulse repetition frequency of 183.6 kHz with an average power of 47 W, a pulse duration of 26 ns, and a peak power of 10.5 kW was achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  3. S. Kim, J. Lee, and H. Jeon, “Over 1 hour continuous-wave operation of photonic crystal lasers,” Opt. Express 19(1), 1–6 (2011).
    [CrossRef] [PubMed]
  4. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
    [CrossRef] [PubMed]
  5. W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express 18(9), 8969–8975 (2010).
    [CrossRef] [PubMed]
  6. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
    [CrossRef] [PubMed]
  7. E. Seise, A. Klenke, S. Breitkopf, M. Plötner, J. Limpert, and A. Tünnermann, “Coherently combined fiber laser system delivering 120 μJ femtosecond pulses,” Opt. Lett. 36(4), 439–441 (2011).
    [CrossRef] [PubMed]
  8. F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
    [CrossRef]
  9. J. C. Kemp, “Piezo-optical birefringence modulators,” J. Opt. Soc. Am. 59(8), 950–953 (1969).
  10. F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
    [CrossRef] [PubMed]
  11. R. Petkovšek, F. Bammer, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photoelastic modulator and possible applications,” Appl. Opt. 48(7), C86–C91 (2009).
    [CrossRef] [PubMed]
  12. R. Petkovšek, V. Novak, F. Bammer, J. Možina, and B. Podobnik, “Power scaling of AOM-switched lasers with SCPEM-based time-multiplexing,” Opt. Express 19(21), 19855–19860 (2011).
    [CrossRef] [PubMed]
  13. F. Bammer, B. Holzinger, and T. Schumi, “A single crystal photo-elastic modulator,” Proc. SPIE 6469, 1–8 (2007).
  14. F. Hoff and B. Stadnik, “Effects of piezoelectric resonances in ADP and KDP light-modulator crystals,” Electron. Lett. 2(8), 293 (1966).
    [CrossRef]
  15. R. Weil and D. Halido, “Resonant-piezoelectro-optic light modulation,” J. Appl. Phys. 45(5), 2258–2265 (1974).
    [CrossRef]
  16. F. Bammer, R. Petkovsek, M. Frede, and B. Schulz, “Q-switching with a dual mode single crystal photo-elastic modulator,” Proc. SPIE7131, 71311H (2008).
  17. J. C. Canit and C. Pichon, “Low frequency photoelastic modulator,” Appl. Opt. 23(13), 2198–2200 (1984).
    [CrossRef] [PubMed]
  18. L. Turi, C. Kuti, and F. Krausz, “Piezoelectrically induced diffraction modulation of light,” IEEE J. Quantum Electron. 26(7), 1234–1240 (1990).
    [CrossRef]

2011

2010

2009

R. Petkovšek, F. Bammer, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photoelastic modulator and possible applications,” Appl. Opt. 48(7), C86–C91 (2009).
[CrossRef] [PubMed]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

2008

2007

F. Bammer, B. Holzinger, and T. Schumi, “A single crystal photo-elastic modulator,” Proc. SPIE 6469, 1–8 (2007).

F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
[CrossRef] [PubMed]

2006

2005

1990

L. Turi, C. Kuti, and F. Krausz, “Piezoelectrically induced diffraction modulation of light,” IEEE J. Quantum Electron. 26(7), 1234–1240 (1990).
[CrossRef]

1984

1974

R. Weil and D. Halido, “Resonant-piezoelectro-optic light modulation,” J. Appl. Phys. 45(5), 2258–2265 (1974).
[CrossRef]

1969

1966

F. Hoff and B. Stadnik, “Effects of piezoelectric resonances in ADP and KDP light-modulator crystals,” Electron. Lett. 2(8), 293 (1966).
[CrossRef]

Alkeskjold, T. T.

Bammer, F.

Bello-Doua, R.

Boullet, J.

Breitkopf, S.

Broeng, J.

Canit, J. C.

Cazaux, M.

Chen, Y. F.

Cocquelin, B.

Cormier, E.

Cucinotta, A.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

Deguil-Robin, N.

Desmarchelier, R.

Ermeneux, S.

Frede, M.

F. Bammer, R. Petkovsek, M. Frede, and B. Schulz, “Q-switching with a dual mode single crystal photo-elastic modulator,” Proc. SPIE7131, 71311H (2008).

Halido, D.

R. Weil and D. Halido, “Resonant-piezoelectro-optic light modulation,” J. Appl. Phys. 45(5), 2258–2265 (1974).
[CrossRef]

Hoff, F.

F. Hoff and B. Stadnik, “Effects of piezoelectric resonances in ADP and KDP light-modulator crystals,” Electron. Lett. 2(8), 293 (1966).
[CrossRef]

Holzinger, B.

F. Bammer, B. Holzinger, and T. Schumi, “A single crystal photo-elastic modulator,” Proc. SPIE 6469, 1–8 (2007).

Huang, W. C.

Huang, Y. P.

Jakobsen, C.

Jeon, H.

Kemp, J. C.

Kim, S.

Klenke, A.

Krausz, F.

L. Turi, C. Kuti, and F. Krausz, “Piezoelectrically induced diffraction modulation of light,” IEEE J. Quantum Electron. 26(7), 1234–1240 (1990).
[CrossRef]

Kuti, C.

L. Turi, C. Kuti, and F. Krausz, “Piezoelectrically induced diffraction modulation of light,” IEEE J. Quantum Electron. 26(7), 1234–1240 (1990).
[CrossRef]

Lægsgaard, J.

Laegsgaard, J.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

Laurila, M.

Lee, J.

Liem, A.

Limpert, J.

Manek-Hönninger, I.

Mozina, J.

Možina, J.

Nolte, S.

Novak, V.

Passaro, D.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

Petersson, A.

Petkovsek, R.

F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
[CrossRef] [PubMed]

F. Bammer, R. Petkovsek, M. Frede, and B. Schulz, “Q-switching with a dual mode single crystal photo-elastic modulator,” Proc. SPIE7131, 71311H (2008).

Petkovšek, R.

Pichon, C.

Plötner, M.

Podobnik, B.

Poli, F.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

Röser, F.

Rothhardt, J.

Saby, J.

Salin, F.

Schmidt, O.

Schreiber, T.

Schulz, B.

F. Bammer, R. Petkovsek, M. Frede, and B. Schulz, “Q-switching with a dual mode single crystal photo-elastic modulator,” Proc. SPIE7131, 71311H (2008).

Schumi, T.

F. Bammer, B. Holzinger, and T. Schumi, “A single crystal photo-elastic modulator,” Proc. SPIE 6469, 1–8 (2007).

Schuöcker, D.

Scolari, L.

Seise, E.

Selleri, S.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

Stadnik, B.

F. Hoff and B. Stadnik, “Effects of piezoelectric resonances in ADP and KDP light-modulator crystals,” Electron. Lett. 2(8), 293 (1966).
[CrossRef]

Su, K. W.

Tünnermann, A.

Turi, L.

L. Turi, C. Kuti, and F. Krausz, “Piezoelectrically induced diffraction modulation of light,” IEEE J. Quantum Electron. 26(7), 1234–1240 (1990).
[CrossRef]

Weil, R.

R. Weil and D. Halido, “Resonant-piezoelectro-optic light modulation,” J. Appl. Phys. 45(5), 2258–2265 (1974).
[CrossRef]

Yvernault, P.

Zaouter, Y.

Zellmer, H.

Zhuang, W. Z.

Appl. Opt.

Electron. Lett.

F. Hoff and B. Stadnik, “Effects of piezoelectric resonances in ADP and KDP light-modulator crystals,” Electron. Lett. 2(8), 293 (1966).
[CrossRef]

IEEE J. Quantum Electron.

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Quantum Electron. 15(1), 54–60 (2009).
[CrossRef]

L. Turi, C. Kuti, and F. Krausz, “Piezoelectrically induced diffraction modulation of light,” IEEE J. Quantum Electron. 26(7), 1234–1240 (1990).
[CrossRef]

J. Appl. Phys.

R. Weil and D. Halido, “Resonant-piezoelectro-optic light modulation,” J. Appl. Phys. 45(5), 2258–2265 (1974).
[CrossRef]

J. Opt. Soc. Am.

Opt. Express

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
[CrossRef] [PubMed]

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
[CrossRef] [PubMed]

M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
[CrossRef] [PubMed]

R. Petkovšek, V. Novak, F. Bammer, J. Možina, and B. Podobnik, “Power scaling of AOM-switched lasers with SCPEM-based time-multiplexing,” Opt. Express 19(21), 19855–19860 (2011).
[CrossRef] [PubMed]

W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express 18(9), 8969–8975 (2010).
[CrossRef] [PubMed]

S. Kim, J. Lee, and H. Jeon, “Over 1 hour continuous-wave operation of photonic crystal lasers,” Opt. Express 19(1), 1–6 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

F. Bammer, B. Holzinger, and T. Schumi, “A single crystal photo-elastic modulator,” Proc. SPIE 6469, 1–8 (2007).

Other

F. Bammer, R. Petkovsek, M. Frede, and B. Schulz, “Q-switching with a dual mode single crystal photo-elastic modulator,” Proc. SPIE7131, 71311H (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Standard PEM (a) and SCPEM (b); Arrows indicate main oscillation.

Fig. 2
Fig. 2

Finite-element-simulation (with the program ANSYS) of two different eigenmodes of a y-excited LiTaO3-crystal with dimensions of 28.6x9.5x4 mm: x-eigenmode at 91.8 kHz (a) and y-eigenmode at 275.4 kHz (b).

Fig. 3
Fig. 3

Theoretical retardation ((a) and (b)) and transmission curves ((c) and (d)) for a SCPEM with a polarizer for mono-mode-operation ((a) and (c)) and dual-mode- operation ((b) and (d)).

Fig. 4
Fig. 4

Scheme of the setup based on a fiber-rod-laser.

Fig. 5
Fig. 5

Experimental results for SCPEM mono-mode-operation. Driving voltage (a), relative optical transmission (b) and laser output pulses (c). Pulse repetition frequency 183.6 kHz.

Fig. 6
Fig. 6

Experimental results for SCPEM dual-mode operation: driving voltage (a), relative transmission (b), laser output pulses (c). Pulse repetition frequency 183.6 kHz, peak power 10.5 kW, pulse width 26 ns, pulse energy 257 µJ, and average power 47 W. A single pulse is shown in graph (d).

Fig. 7
Fig. 7

cw-power and average power in pulsed mode against pump-current.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( δ ) = cos 2 ( δ 2 ) = 1 2 ( 1 + cos δ ) .
δ ( t ) = δ 1 sin ( 2 π f R 1 t ) + δ 3 sin ( 2 π f R 3 t ) ,

Metrics