Abstract

Silicon photonics has emerged as the premier candidate for the photonic systems-on-chip (SoC). The scheme based on the silicon Mach-Zehnder modulator (MZM) to generate photonic ultra-wideband (UWB) signals is helpful to the integration of the UWB system with other optical networks on a single silicon-based chip. In this paper, according to the influence of the nonlinear free carrier dispersion (FCD) effect and the free carrier absorption (FCA) effect, the performance of two typical UWB generation schemes is numerically analyzed. The double side-band UWB (DSB-UWB) generation scheme needs the DC reverse bias which increases the complexity of the modulator and there is a residual chirp resulting from the FCD effect even the push-pull operation is adopted. The quasi single-sideband UWB (QSSB-UWB) generation scheme doesn’t have these problems. However there is the asymmetric amplitude peak in the generated UWB signal. The property of the large singal modulation is also investigated to improve the signal-to-noise ratio (SNR).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  3. C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, “Direct transmission of ultra wide band signals using single mode radio-over-fiber system,” Proc. 2005 Asia-Pacific Microw. Conf. (APMC) (2005), Vols. 1–5, 1315–1317.
  4. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  5. P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [CrossRef]
  6. C. S. Lim, M. L. Yee, and L. C. Ong, “Performance of transmission of ultra wideband signals using radio-over-fiber system,” in Proc. ITS Tele. Conf. (2006), pp. 250–253.
  7. S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
  8. S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
    [CrossRef]
  9. R. Gu, S. L. Pan, X. F. Chen, M. H. Pan, and D. Ben, “Influence of large signal modulation on photonic UWB generation based on electro-optic modulator,” Opt. Express 19(14), 13686–13691 (2011).
    [CrossRef] [PubMed]
  10. R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  11. H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron. 46(12), 1763–1768 (2010).
    [CrossRef]
  12. Online Available: http://www.silvaco.com .
  13. H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett. 14(3), 298–300 (2002).
    [CrossRef]
  14. S. L. Pan and J. P. Yao, “Photonic generation of chirp-free UWB signals for UWB over fiber applications,” in International Topical Meeting on MWP (2009), pp. 1–4.

2012 (1)

2011 (1)

2010 (2)

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron. 46(12), 1763–1768 (2010).
[CrossRef]

2009 (1)

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

2007 (1)

2004 (1)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

2002 (1)

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett. 14(3), 298–300 (2002).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Ben, D.

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bogaerts, W.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron. 46(12), 1763–1768 (2010).
[CrossRef]

Chen, L.

Chen, X. F.

Chen, Y.

Dong, P.

Gnauck, A. H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett. 14(3), 298–300 (2002).
[CrossRef]

Gu, R.

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Keersgieter, A. D.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron. 46(12), 1763–1768 (2010).
[CrossRef]

Kim, H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett. 14(3), 298–300 (2002).
[CrossRef]

Pan, M. H.

Pan, S. L.

R. Gu, S. L. Pan, X. F. Chen, M. H. Pan, and D. Ben, “Influence of large signal modulation on photonic UWB generation based on electro-optic modulator,” Opt. Express 19(14), 13686–13691 (2011).
[CrossRef] [PubMed]

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Wang, Q.

Yao, J. P.

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Yu, H.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron. 46(12), 1763–1768 (2010).
[CrossRef]

Zeng, F.

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett. 14(3), 298–300 (2002).
[CrossRef]

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

J. Lightwave Technol. (1)

Nature (1)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Quantum Electron. (2)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron. 46(12), 1763–1768 (2010).
[CrossRef]

Other (4)

Online Available: http://www.silvaco.com .

C. S. Lim, M. L. Yee, and L. C. Ong, “Performance of transmission of ultra wideband signals using radio-over-fiber system,” in Proc. ITS Tele. Conf. (2006), pp. 250–253.

C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, “Direct transmission of ultra wide band signals using single mode radio-over-fiber system,” Proc. 2005 Asia-Pacific Microw. Conf. (APMC) (2005), Vols. 1–5, 1315–1317.

S. L. Pan and J. P. Yao, “Photonic generation of chirp-free UWB signals for UWB over fiber applications,” in International Topical Meeting on MWP (2009), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configurations of the two typical UWB monocycle generation schemes based on silicon MZM. (a) Generation of DSB-UWB monocycle based on push-pull operation. (b) Generation of QSSB-UWB monocycle.

Fig. 2
Fig. 2

(a). Schematic cross section of an ideal p-n diode based optical phase shifter. (b). Effective refractive index change (Δneff) and the optical loss as a function of the reverse bias.

Fig. 3
Fig. 3

The characteristic of the generated DSB-UWB monocycle based on silicon MZM. (a) The phase shift of two p-n diode based phase shifters drived by ideal electrical monocycle pulse. (b) The amplitude of the generated DSB-UWB signal. (c) The amplitude peak change of the generated DSB-UWB signal with the voltage peak of electrical monocycle drive signal. (d) Time-resolved transient chirp of the optical DSB-UWB signal generated from the silicon MZM.

Fig. 4
Fig. 4

The characteristic of the generated QSSB-UWB monocycle based on silicon MZM. (a) The phase shift of one p-n diode based phase shifter driven by ideal electrical Gaussian pulse. (b) The amplitude of the generated QSSB-UWB signal. (c) The positive peak and the negative peak change with the voltage peak of electrical Gaussian drive signal. (d) The positive peak and the negative peak change as the function of the length of phase shifter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = 0.5 × { exp [ ( α 1 + α 0 ) L / 2 ] × exp [ j φ W ( t ) + j φ D C + j π / 2 ] + exp [ ( α 2 + α 0 ) L / 2 ] × exp [ j φ W ( t ) + j φ D C ] }
I ( t ) exp [ ( α 1 + α 0 ) L ] + exp [ ( α 2 + α 0 ) L ] + 2 exp [ ( α 1 + α 0 ) L / 2 ] exp [ ( α 2 + α 0 ) L / 2 ] cos ( φ W ( t ) φ W ( t ) + π / 2 )
E ( t ) = 0.5 × [ exp ( α 3 L / 2 ) exp ( j φ G ( t ) + j π / 2 ) + exp ( α 4 L / 2 ) exp ( j φ G ( t τ 0 ) ) ]
I ( t ) exp ( α 3 L ) + exp ( α 4 L ) + 2 exp [ ( α 3 + α 4 ) L / 2 ] cos ( φ G ( t ) φ G ( t τ 0 ) + π / 2 )

Metrics