Abstract

Surface Plasmon microscopy can measure local changes of refractive index on the micron scale. Interferometric plasmon imaging delivers quantitative high spatial resolution sensitive to refractive index. In addition the so called V(z) method allows image contrast to be controlled by varying the sample defocus without substantially degrading spatial resolution. Here, we show how a confocal system provides a simpler and more stable alternative. This system, however, places greater demands on the dynamic range of the system. We therefore use a spatial light modulator to engineer the microscope pupil function to suppress light that does not contribute to the signal.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high-resolution 2pi surface plasmon microscopy,” Opt. Lett. 25(11), 823–825 (2000).
    [CrossRef] [PubMed]
  2. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39(34), 6279–6287 (2000).
    [CrossRef] [PubMed]
  3. L. Berguiga, S. J. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett. 32(5), 509–511 (2007).
    [CrossRef] [PubMed]
  4. L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul, “Amplitude and phase images of cellular structures with a scanning surface plasmon microscope,” Opt. Express 19(7), 6571–6586 (2011).
    [CrossRef] [PubMed]
  5. M. G. Somekh, G. Stabler, S. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett. 34(20), 3110–3112 (2009).
    [CrossRef] [PubMed]
  6. P. Torok, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4-6), 300–315 (1998).
    [CrossRef]
  7. Q. Gong and S. S. Hsu, “Aberration Measurement using Axial Intensity,” Opt. Eng. 33(4), 1176–1186 (1994).
    [CrossRef]
  8. G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).
  9. Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
    [CrossRef] [PubMed]

2011 (1)

2009 (1)

2008 (1)

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

2007 (1)

2000 (2)

1998 (2)

G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).

P. Torok, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4-6), 300–315 (1998).
[CrossRef]

1994 (1)

Q. Gong and S. S. Hsu, “Aberration Measurement using Axial Intensity,” Opt. Eng. 33(4), 1176–1186 (1994).
[CrossRef]

Argoul, F.

Bao, Y.-J.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Beketov, G. V.

G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).

Berguiga, L.

Chegel, V. I.

G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).

Elezgaray, J.

Gong, Q.

Q. Gong and S. S. Hsu, “Aberration Measurement using Axial Intensity,” Opt. Eng. 33(4), 1176–1186 (1994).
[CrossRef]

Higdon, P. D.

P. Torok, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4-6), 300–315 (1998).
[CrossRef]

Hsu, S. S.

Q. Gong and S. S. Hsu, “Aberration Measurement using Axial Intensity,” Opt. Eng. 33(4), 1176–1186 (1994).
[CrossRef]

Liu, S.

Liu, S. G.

Lu, W.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Lu, X.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Ming, N.-B.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Monier, K.

Peng, R.-W.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Roland, T.

See, C. W.

Shao, J.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Shirshov, Y. M.

G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).

Shu, D.-J.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Shynkarenko, O. V.

G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).

Somekh, M. G.

Stabler, G.

Torok, P.

P. Torok, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4-6), 300–315 (1998).
[CrossRef]

Velinov, T. S.

Wang, M.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Wilson, T.

P. Torok, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4-6), 300–315 (1998).
[CrossRef]

Zhang, J.

Zhang, S. J.

Appl. Opt. (1)

Opt. Commun. (1)

P. Torok, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4-6), 300–315 (1998).
[CrossRef]

Opt. Eng. (1)

Q. Gong and S. S. Hsu, “Aberration Measurement using Axial Intensity,” Opt. Eng. 33(4), 1176–1186 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Sensor Actuat (1)

G. V. Beketov, Y. M. Shirshov, O. V. Shynkarenko, and V. I. Chegel, “Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters,”Sensor Actuat 48, 432–438 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Conceptual diagram of SP confocal microscope; (b) simplified schematic diagram of the experiment setup

Fig. 2
Fig. 2

Simulated V(z) curves for different pinhole diameter. Solid curve 50nm bare gold, dashed curves gold with 10nm overlayer with refractive index 1.5. Each pinhole diameter is displaced by 0.1 on the y-axis and curves corresponding to the overlayers are displaced by a further 0.05 on the y-axis. Pinhole radii are defined in terms of radius of Airy disc radius (0.61λ/NA) are shown in the legend.

Fig. 3
Fig. 3

Experimental V(z) curves on 50nm gold sample for different pinhole radii

Fig. 4
Fig. 4

Effects of different pupil functions on recovered V(z) for mirror and gold samples. (a) Pupil function distributions. Green dashed curve shows the p-polarization reflection coefficient with respect to the aperture of the microscope object. This shows the SP dip relative to the objective aperture. The blue (FuncM) and red (FuncB) curves show the modified pupils to optimize contrast and reduce oscillations due to hard cut off in the lens aperture. (b) V(z) comparison between mirror and 50nm Au when using uniform illumination. (c) V(z) curves from a mirror using uniform, FuncM, and FuncB pupils. (d) V(z) curves of 50nm gold by FuncM and FuncB pupil functions.

Fig. 5
Fig. 5

BSA grating structure.

Fig. 6
Fig. 6

1D grating images with different defocuses. Bottom right shows V(z) curves on coated and uncoated regions explaining contrast reversal.

Fig. 7
Fig. 7

One dimensional grating images at −1.25μm defocus using different pinhole radii.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I c o ( z ) = | V ( z ) | 2 = | 0 2 π 0 s max P i n ( s ) P o u t ( s ) [ α ( ϕ ) r p ( s ) + β ( ϕ ) r s ( s ) ] exp 2 j n k z cos θ d s d ϕ | 2
I t o t ( z ) = I c o ( z ) + I c r ( z )
Δ z = λ 2 n ( 1 cos θ p )

Metrics