Abstract

High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied. The distributed modal filtering (DMF) design enables SM guidance in ultra low NA fibers with very large cores, where large preform tolerances can be compensated during the fiber draw. Design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover a large fraction of the Yb emission band including wavelengths of 1030 nm and 1064 nm. Design parameters tolerating refractive index fabrication uncertainties of ± 10−4 are targeted to yield stable SM bandwidths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  2. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
    [CrossRef]
  3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003).
    [CrossRef] [PubMed]
  4. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
    [CrossRef] [PubMed]
  5. C.-H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” OSA Technical Digest Series (CD), paper CTuBB3 (2007).
  6. S. Lefrancois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, and F. W. Wise, “Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber,” Opt. Express 19(4), 3464–3470 (2011).
    [CrossRef] [PubMed]
  7. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010).
    [CrossRef] [PubMed]
  8. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [CrossRef]
  9. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
    [CrossRef] [PubMed]
  10. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005).
    [CrossRef] [PubMed]
  11. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
    [CrossRef] [PubMed]
  12. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
    [CrossRef] [PubMed]
  13. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
    [CrossRef] [PubMed]
  14. J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6(8), 798–804 (2004).
    [CrossRef]
  15. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [CrossRef]
  16. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [CrossRef]

2012 (2)

2011 (5)

2010 (2)

2007 (1)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

2005 (1)

2004 (2)

2003 (1)

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Alkeskjold, T. T.

Baumgartl, M.

Bouwmans, G.

Broeng, J.

Clarkson, W. A.

Cocquelin, B.

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Eidam, T.

Fini, J.

Galvanauskas, A.

Hansen, K. R.

Jakobsen, C.

Jansen, F.

Jauregui, C.

Jørgensen, M. M.

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Knight, J.

Koshiba, M.

Lægsgaard, J.

Laurila, M.

Lefrancois, S.

Liem, A.

Limpert, J.

Liu, C.-H.

Murao, T.

Nilsson, J.

Nolte, S.

Otto, H.-J.

Percival, R.

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Petersson, A.

Reich, M.

Richardson, D. J.

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Russell, P.

Saby, J.

Saitoh, K.

Salin, F.

Schreiber, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
[CrossRef] [PubMed]

Scolari, L.

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Sosnowski, T. S.

Stutzki, F.

Tünnermann, A.

Vincetti, L.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Wadsworth, W.

Wirth, C.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Wise, F. W.

Zellmer, H.

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

J. Opt. A (1)

J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6(8), 798–804 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (11)

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[CrossRef]

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003).
[CrossRef] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12(7), 1313–1319 (2004).
[CrossRef] [PubMed]

S. Lefrancois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, and F. W. Wise, “Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber,” Opt. Express 19(4), 3464–3470 (2011).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[CrossRef]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
[CrossRef] [PubMed]

J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19(3), 1713–1727 (2011).
[CrossRef] [PubMed]

T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
[CrossRef] [PubMed]

M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[CrossRef]

Other (1)

C.-H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” OSA Technical Digest Series (CD), paper CTuBB3 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The model of a quarter of the cross-section of the distributed mode filtered (DMF) rod fiber for numerical simulations. The core of the DMF rod fiber is defined by the quadrilateral at the center. The smallest circles represent air holes in the cladding structure with a refractive index of nair, where some are surrounded by up-doped silica placed in a kagome-type lattice with refractive index ndope. The outer ring represents the air cladding, and the pitch, Λ, is indicated as the center to center distance between two adjacent air holes.

Fig. 2
Fig. 2

The fraction of power within the core for the fundamental mode (FM) and first higher order mode (LP11) as a function of wavelength. Within the SM bandwidth (light blue) the power level of an additional LP11-like mode increases (LP(2)11). One normalized transverse component of the electrical field distributions of the modes at A, B and C are seen to the right.

Fig. 3
Fig. 3

(a) The effective refractive index contrast as a function of wavelength. The band of cladding modes decreases in effective refraction index as a function of wavelength, and avoided crossings appear between these and the other modes of the DMF rod fiber. (b) The fraction of power within the core for the fundamental mode (solid curve) and LP11-like modes (dashed and dash-dotted curves) as a function of wavelength. Additional LP11-like modes increase in core power within the SM bandwidths. The first band of cladding modes creates the largest SM bandwidth.

Fig. 4
Fig. 4

The fraction of power within the core for the fundamental mode (FM) and first higher order mode (LP11) as a function of wavelength. Within the SM bandwidth (light blue) the power level of two additional LP11-like mode increase (LP(2)11 and LP(3)11). One normalized transverse component of the electrical field distribution of the modes at A, B, C and D are seen to the right.

Fig. 5
Fig. 5

Power spectra for estimating fabrication parameters to be targeted during the fiber pull. Three values of the refractive index contrast, Δn, is considered, where the relative air hole diameter is altered accordingly: (a) Δn = 10−4 and d/Λ = 0.1, (b) Δn = 0 and d/Λ = 0.15, and (c) Δn = −10−4 and d/Λ = 0.2.

Fig. 6
Fig. 6

The fraction of power within the core as a function of wavelength for the optimized design with three different values of the pitch: (a) 11.5 μm, (b) 17.5 μm, and (c) 20.5 μm, having relative single mode bandwidths of 6.9%, 6.9%, and 7.0% respectively.

Fig. 7
Fig. 7

The fraction of modal power within the core as a function of wavelength. The pitch is 20.5 μm and the core refractive index is up-doped with 10−4 in (a) and down-doped with −10−4 in (b), which significantly changes the single mode bandwidth (light blue area).

Tables (2)

Tables Icon

Table 1 Design Parameters and Obtained Single Mode Bandwidths for Three Values of the Core Refractive Index and the Air Hole Diameter

Tables Icon

Table 2 The Single Mode Bandwidth for Four Values of the Pitch When the Air Hole Diameter Is Fixed at 1.45 μm*

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = ( 2 r dope Λ ) 2 ( d Λ ) 2 .
V res = 2 π w dope λ N A .

Metrics