Abstract

We measure end-of-line polysilicon waveguide propagation losses of ~6-15 dB/cm across the telecommunication O-, E-, S-, C- and L-bands in a process representative of high-volume product integration. The lowest loss of 6.2 dB/cm is measured at 1550 nm in a polysilicon waveguide with a 120 nm x 350 nm core geometry. The reported waveguide characteristics are measured after the thermal cycling of the full CMOS electronics process that results in a 32% increase in the extracted material loss relative to the as-crystallized waveguide samples. The measured loss spectra are fit to an absorption model using defect state parameters to identify the dominant loss mechanism in the end-of-line and as-crystallized polysilicon waveguides.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  3. S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanović, and K. Asanović, “Re-architecting DRAM memory systems with monolithically integrated silicon photonics,” in International Symposium on Computer Architecture (Association for Computing Machinery, New York 2010), 129–140.
  4. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [CrossRef]
  5. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [CrossRef]
  6. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 .
    [CrossRef] [PubMed]
  7. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  8. T. Ohsawa, K. Fujita, K. Hatsuda, T. Higashi, M. Morikado, Y. Minami, T. Shino, H. Nakajima, K. Inoh, T. Hamamoto, and S. Watanabe, “An 18.5ns 128MB SOI DRAM with floating body cell,” in International Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2005), 459–609.
  9. J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in Proc. IEEE Symposium on High-Performance Interconnects (Institute of Electrical and Electronics Engineers, New York 2008), 190–194.
  10. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
    [CrossRef]
  11. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5118 .
    [CrossRef] [PubMed]
  12. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
    [CrossRef]
  13. S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
    [CrossRef]
  14. B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18326 .
    [CrossRef] [PubMed]
  15. G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003).
    [CrossRef]
  16. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  17. J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express 19(3), 2335–2346 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-3-2335 .
    [CrossRef] [PubMed]
  18. H.-C. Ji, K. H. Ha, I. S. Joe, S. G. Kim, K. W. Na, D. J. Shin, S. D. Suh, Y. D. Park, and C. H. Chung, “Optical interface platform for DRAM integration,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThV4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThV4
  19. J. S. Orcutt, S. D. Tang, S. Kramer, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides suitable for integration within a high-volume electronics process,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2011), paper CThHH2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO : S and I-2011-CThHH2
  20. J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
    [CrossRef]
  21. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432. http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6425
  22. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
    [CrossRef]
  23. S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20891 .
    [CrossRef] [PubMed]
  24. S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
    [CrossRef]
  25. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popović, V. Stojanović, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CThKK5
  26. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [CrossRef]
  27. S. Sridaran and S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express 18(4), 3850–3857 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3850 .
    [CrossRef] [PubMed]
  28. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-18-19055 .
    [CrossRef] [PubMed]
  29. http://www.research.ibm.com/DAMOCLES/html_files/phys.html
  30. W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983).
    [CrossRef]

2011 (1)

2010 (6)

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 .
[CrossRef] [PubMed]

S. Sridaran and S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express 18(4), 3850–3857 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3850 .
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-18-19055 .
[CrossRef] [PubMed]

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
[CrossRef]

2009 (3)

2008 (2)

2006 (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

2005 (1)

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005).
[CrossRef]

2004 (2)

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

2003 (1)

G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003).
[CrossRef]

2000 (1)

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

1996 (3)

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

1983 (1)

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983).
[CrossRef]

Agarwal, A. M.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

Amberg, P.

Assanto, G.

G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Barnett, B. C.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Barwicz, T.

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005).
[CrossRef]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bhave, S. A.

Biegelsen, D. K.

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Black, M. R.

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

Block, B. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18326 .
[CrossRef] [PubMed]

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bonifield, T.

Cadien, K.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Chang, P.

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Chen, A.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Chen, D.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Chuyanov, V.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Colace, L.

G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003).
[CrossRef]

Cunningham, J. E.

Dalton, L. R.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Davids, P. S.

Duan, X.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Fang, Q.

Fetterman, H.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Foresi, J. S.

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

Gondarenko, A.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

Haus, H. A.

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005).
[CrossRef]

Ho, R.

Hollingsworth, R.

Holzwarth, C. W.

Huang, S.

Jackson, W. B.

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983).
[CrossRef]

Jalali, B.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Jen, A. K. Y.

Johnson, N. M.

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983).
[CrossRef]

Kalluri, S.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Kärtner, F. X.

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Khilo, A.

Kimerling, L. C.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
[CrossRef]

Kobrinski, M. J.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Krishnamoorthy, A. V.

Kwong, D. L.

S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
[CrossRef]

S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20891 .
[CrossRef] [PubMed]

Lee, K. K.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Lexau, J.

Li, G.

Li, H.

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Liao, L.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

Lim, D. R.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Lipson, M.

List, S.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Lo, G. Q.

S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
[CrossRef]

S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20891 .
[CrossRef] [PubMed]

Luo, J.

Luo, Y.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Manipatruni, S.

Masini, G.

G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003).
[CrossRef]

Mekis, A.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Orcutt, J. S.

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Pinckney, N.

Pinguet, T.

Poitras, C. B.

Polishak, B. M.

Popovic, M. A.

Preston, K.

Raj, K.

Ram, R. J.

Reshotko, M.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18326 .
[CrossRef] [PubMed]

Robertson, F.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Shi, J.

Shubin, I.

Smith, H. I.

Sridaran, S.

Steier, W. H.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Stojanovic, V.

Sun, J.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Thacker, H.

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Yao, J.

Ye, J. D.

S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
[CrossRef]

Young, I.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Younkin, T. R.

Yu, M. B.

Zheng, J.-F.

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Zheng, X.

Zhu, S.

S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
[CrossRef]

S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20891 .
[CrossRef] [PubMed]

Ziari, M.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 µm,” Appl. Phys. Lett. 82(15), 2524–2526 (2003).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996).
[CrossRef]

W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett. 43(2), 195–197 (1983).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005).
[CrossRef]

IEEE J. Solid-state Circuits (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996).
[CrossRef]

S. Zhu, G. Q. Lo, J. D. Ye, and D. L. Kwong, “Influence of RTA and LTA on the optical propagation loss in polycrystalline silicon wire waveguides,” IEEE Photon. Technol. Lett. 22(7), 480–482 (2010).
[CrossRef]

Intel Technol. J. (1)

M. J. Kobrinski, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

J. Appl. Phys. (1)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996).
[CrossRef]

J. Electron. Mater. (1)

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Opt. Express (7)

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18326 .
[CrossRef] [PubMed]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5118 .
[CrossRef] [PubMed]

S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20891 .
[CrossRef] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 .
[CrossRef] [PubMed]

S. Sridaran and S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express 18(4), 3850–3857 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3850 .
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-18-19055 .
[CrossRef] [PubMed]

J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express 19(3), 2335–2346 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-3-2335 .
[CrossRef] [PubMed]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other (8)

S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanović, and K. Asanović, “Re-architecting DRAM memory systems with monolithically integrated silicon photonics,” in International Symposium on Computer Architecture (Association for Computing Machinery, New York 2010), 129–140.

T. Ohsawa, K. Fujita, K. Hatsuda, T. Higashi, M. Morikado, Y. Minami, T. Shino, H. Nakajima, K. Inoh, T. Hamamoto, and S. Watanabe, “An 18.5ns 128MB SOI DRAM with floating body cell,” in International Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2005), 459–609.

J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in Proc. IEEE Symposium on High-Performance Interconnects (Institute of Electrical and Electronics Engineers, New York 2008), 190–194.

H.-C. Ji, K. H. Ha, I. S. Joe, S. G. Kim, K. W. Na, D. J. Shin, S. D. Suh, Y. D. Park, and C. H. Chung, “Optical interface platform for DRAM integration,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThV4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThV4

J. S. Orcutt, S. D. Tang, S. Kramer, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides suitable for integration within a high-volume electronics process,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2011), paper CThHH2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO : S and I-2011-CThHH2

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432. http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6425

C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popović, V. Stojanović, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CThKK5

http://www.research.ibm.com/DAMOCLES/html_files/phys.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cartoon cross-section of the memory process used for this work. All unlabeled dielectric layers in the immediate proximity of the waveguide core have a refractive index close to that of fused silica at the wavelengths of interest. (b) Waveguide mode profile contours for a narrow waveguide at 1550 nm with 120 nm polysilicon layer thickness illustrating the asymmetry introduced by the substrate removal and low polysilicon guided power fraction. (c) High-confinement waveguide modes such as that of an 800 nm waveguide width show no observable asymmetry and clearly confine the majority of the light in the polysilicon core region.

Fig. 2
Fig. 2

(a) Optical micrograph of “paperclip” waveguide loss test structures for three waveguide widths. Four differential lengths each are used to measure propagation losses in two sets designed for high and low loss cases. (b) The width of the straight section is varied by introducing tapers between single-mode waveguide bends to ensure that the transmission of only the fundamental mode is measured. Single-mode lead widths of 376 nm, 476 nm and 600 nm are used for 1.25 μm, 1.4 μm and 1.55 μm wavelength centers respectively. The chosen bend radius of 15 μm reduces the total excess bending loss of the lead waveguides to below 1 dB. (c) Uniform grating couplers with 200 μm long linear tapers are designed for 10.5 μm input mode diameter for an 8° off-normal incident angle. Design grating periods 819 nm, 974 nm and 1067 nm with duty cycles 37.5%, 37.5% and 42.5% are used for 1.25 μm, 1.4 μm and 1.55 μm wavelength centers respectively.

Fig. 3
Fig. 3

Measured propagation loss as a function of wavelength and waveguide width for a thermally processed wafer with a 120 nm polysilicon thickness. The error bars of the measurements are calculated from the 95% confidence intervals of the transmission loss as function of paperclip test section length measurements. Cross-wafer and wafer-to-wafer variability data was not taken. Measurements of different die from the reported wafers agreed within the precision of the propagation loss fit error bars reported. Simulation curves for the confinement factor scaling of waveguide bulk loss were then fit to the measured loss of the wide waveguides and are shown alongside the measured data for comparison.

Fig. 4
Fig. 4

Simulated waveguide mode (a) confinement factor and (b) effective index. Confinement factor curves from (a) are multiplied by the extracted bulk loss to generate the fit curves shown in Fig. 3. Effective index curves are overlaid with the simulated 1D slab mode index for the SiC layer that is correlated with the observed loss increase across measured wavelengths.

Fig. 5
Fig. 5

(a) Extracted propagation loss from measurements taken in waveguides of two widths, both immediately after the crystallization anneal and after the subsequent full thermal processing. Data from 2.0 µm wide waveguides are plotted as squares and from 1.5 µm waveguides as diamonds, along with fits, calculated as described in the text, to both sets of data. (b) Polysilicon density of states (DOS), plotted as a function of energy relative to the valence band-edge, used for the fit calculations - 23% difference in the height of the peak around 0.35 eV produced the difference between the two fits in (a). The pinned Fermi level and example optical transitions are indicated. (c) Fractional increase in material loss as a function of wavelength following full thermal processing.

Fig. 6
Fig. 6

High-resolution scanning electron micrograph (SEM) of a 275 nm wide isolated polysilicon line that was used for line edge roughness extraction. An estimated roughness of 3 nm RMS with a 50 nm correlation length was obtained from this analysis.

Tables (1)

Tables Icon

Table 1 Summary of experimentally measured waveguide losses, bulk absorption calculations and electric field overlaps with surfaces where roughness is a concern. Surface overlaps were calculated by integrating the electric field within 5 nm of each surface. All data presented is for λ = 1550 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( ω ) = A [ d E v ρ v ( E v ) ρ g ( E v + ω ) f ( E v ) [ 1 f ( E v + ω ) ] + d E g ρ g ( E g ) ρ c ( E g + ω ) f ( E g ) [ 1 f ( E g + ω ) ] ]

Metrics