Abstract

Broadband NIR photoluminescence (from 1000 to 2500 nm) was observed from partially reduced AlCl3/ZnCl2/BiCl3 glass, containing subvalent bismuth species. The luminescence consists of three bands, assigned to Bi+, Bi24+, and Bi53+ ions. The physical and optical characteristics of these centers and possible contribution to NIR luminescence from bismuth-doped oxide glasses are discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
    [CrossRef]
  2. E. M. Dianov, “Bi-doped glass optical fibers: is it a new breakthrough in laser materials?” J. Non-Cryst. Solids 355(37-42), 1861–1864 (2009).
    [CrossRef]
  3. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
    [CrossRef] [PubMed]
  4. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005).
    [CrossRef] [PubMed]
  5. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  6. A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
    [CrossRef]
  7. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008).
    [CrossRef] [PubMed]
  8. L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals,” Opt. Lett. 34(16), 2504–2506 (2009).
    [CrossRef] [PubMed]
  9. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
    [CrossRef] [PubMed]
  10. M. Peng, B. Sprenger, M. A. Schmidt, H. G. L. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  11. L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett. 36(23), 4551–4553 (2011).
    [CrossRef] [PubMed]
  12. H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
    [CrossRef]
  13. H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
    [CrossRef]
  14. H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
    [CrossRef] [PubMed]
  15. W. A. Runciman, “Absorption and emission spectra of bismuth-activated phosphors,” Proc. Phys. Soc. A 68(7), 647–649 (1955).
    [CrossRef]
  16. A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
    [CrossRef]
  17. H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
    [CrossRef] [PubMed]
  18. M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
    [CrossRef]
  19. N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967).
    [CrossRef]
  20. R. M. Friedman and J. D. Corbett, “Synthesis and structural characterization of bismuth(1+)nonabismuth(5+)hexachlorohafnate(IV), BiBi9(HfCl6)3,” Inorg. Chem. 12(5), 1134–1139 (1973).
    [CrossRef]
  21. S. Ulvenlund, L. Bengtsson-Kloo, and K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995).
    [CrossRef]
  22. H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
    [CrossRef]
  23. E. V. Dikarev and B. Li, “Rational syntheses, structure, and properties of the first bismuth(II) carboxylate,” Inorg. Chem. 43(11), 3461–3466 (2004).
    [CrossRef] [PubMed]
  24. B. Wahl and M. Ruck, “Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern – Synthese, Kristallstruktur und chemische Bindung,” Z. Anorg. Allg. Chem. 634(15), 2873–2879 (2008).
    [CrossRef]
  25. J. D. Corbett, F. C. Albers, and R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968).
    [CrossRef]
  26. B. Krebs, M. Mummert, and C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986).
    [CrossRef]
  27. M. Ruck, “Bi34Ir3Br37: Ein pseudosymmetrisches Subbromid aus Bi5+ und Bi62+ Polykationen sowie [IrBi6Br12]– und [IrBi6Br13]2– - Clusteranionen,” Z. Anorg. Allg. Chem. 624(3), 521–528 (1998).
    [CrossRef]
  28. M. Ruck and S. Hampel, “Stabilization of homonuclear Bi5+ and Bi62+ polycations by cluster anions in the crystal structures of Bi12−xIrCl13−x, Bi12−xRhCl13−x and Bi12−xRhBr13−x,” Polyhedron 21(5-6), 651–656 (2002).
    [CrossRef]
  29. N. J. Bjerrum and G. P. Smith, “Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts,” Inorg. Chem. 6(11), 1968–1972 (1967).
    [CrossRef]
  30. J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
    [CrossRef]
  31. A. Hershaft and J. D. Corbett, “The crystal structure of bismuth subchloride. Identification of the ion Bi95+,” Inorg. Chem. 2(5), 979–985 (1963).
    [CrossRef]
  32. H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
    [CrossRef]
  33. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroadband near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
    [CrossRef] [PubMed]
  34. S. Pedersen, “Viscosity, structure and glass formation in the AlCl3-ZnCl2 system,” Ph.D thesis (Institutt for Kjemi, Norges Tekniskurn-Naturvitenskaplige Universitet, 2001).
  35. C. R. Boston and G. P. Smith, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. I. Evidence for two solute species in the system bismuth-bismuth trichloride,” J. Phys. Chem. 66(6), 1178–1181 (1962).
    [CrossRef]
  36. C. R. Boston, G. P. Smith, and L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963).
    [CrossRef]
  37. L. E. Topol, S. J. Yosim, and R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961).
    [CrossRef]
  38. H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967).
    [CrossRef]
  39. B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
    [CrossRef]
  40. N. A. Alexeev, V. P. Gapontsev, M. E. Zhabotinskii, V. B. Kravchenko, and Yu. P. Rudnitskii, Laser Phosphate Glasses (Nauka, Moscow, 1980), Chap. 3.
  41. A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).
  42. H. Kunkely and A. Vogler, “On the origin of the photoluminescence of mercurous chloride,” Chem. Phys. Lett. 240(1-3), 31–34 (1995).
    [CrossRef]
  43. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
    [CrossRef]
  44. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
    [CrossRef] [PubMed]

2012

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroadband near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

2011

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[CrossRef] [PubMed]

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett. 36(23), 4551–4553 (2011).
[CrossRef] [PubMed]

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

2010

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. L. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

2009

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals,” Opt. Lett. 34(16), 2504–2506 (2009).
[CrossRef] [PubMed]

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

E. M. Dianov, “Bi-doped glass optical fibers: is it a new breakthrough in laser materials?” J. Non-Cryst. Solids 355(37-42), 1861–1864 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

2008

A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008).
[CrossRef] [PubMed]

B. Wahl and M. Ruck, “Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern – Synthese, Kristallstruktur und chemische Bindung,” Z. Anorg. Allg. Chem. 634(15), 2873–2879 (2008).
[CrossRef]

2005

2004

E. V. Dikarev and B. Li, “Rational syntheses, structure, and properties of the first bismuth(II) carboxylate,” Inorg. Chem. 43(11), 3461–3466 (2004).
[CrossRef] [PubMed]

2003

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

2002

M. Ruck and S. Hampel, “Stabilization of homonuclear Bi5+ and Bi62+ polycations by cluster anions in the crystal structures of Bi12−xIrCl13−x, Bi12−xRhCl13−x and Bi12−xRhBr13−x,” Polyhedron 21(5-6), 651–656 (2002).
[CrossRef]

1998

M. Ruck, “Bi34Ir3Br37: Ein pseudosymmetrisches Subbromid aus Bi5+ und Bi62+ Polykationen sowie [IrBi6Br12]– und [IrBi6Br13]2– - Clusteranionen,” Z. Anorg. Allg. Chem. 624(3), 521–528 (1998).
[CrossRef]

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

1996

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

1995

S. Ulvenlund, L. Bengtsson-Kloo, and K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995).
[CrossRef]

H. Kunkely and A. Vogler, “On the origin of the photoluminescence of mercurous chloride,” Chem. Phys. Lett. 240(1-3), 31–34 (1995).
[CrossRef]

1994

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

1986

B. Krebs, M. Mummert, and C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986).
[CrossRef]

1973

R. M. Friedman and J. D. Corbett, “Synthesis and structural characterization of bismuth(1+)nonabismuth(5+)hexachlorohafnate(IV), BiBi9(HfCl6)3,” Inorg. Chem. 12(5), 1134–1139 (1973).
[CrossRef]

1968

J. D. Corbett, F. C. Albers, and R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968).
[CrossRef]

1967

N. J. Bjerrum and G. P. Smith, “Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts,” Inorg. Chem. 6(11), 1968–1972 (1967).
[CrossRef]

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967).
[CrossRef]

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967).
[CrossRef]

1963

C. R. Boston, G. P. Smith, and L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963).
[CrossRef]

A. Hershaft and J. D. Corbett, “The crystal structure of bismuth subchloride. Identification of the ion Bi95+,” Inorg. Chem. 2(5), 979–985 (1963).
[CrossRef]

1962

C. R. Boston and G. P. Smith, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. I. Evidence for two solute species in the system bismuth-bismuth trichloride,” J. Phys. Chem. 66(6), 1178–1181 (1962).
[CrossRef]

1961

L. E. Topol, S. J. Yosim, and R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961).
[CrossRef]

1955

W. A. Runciman, “Absorption and emission spectra of bismuth-activated phosphors,” Proc. Phys. Soc. A 68(7), 647–649 (1955).
[CrossRef]

Akada, T.

Albers, F. C.

J. D. Corbett, F. C. Albers, and R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968).
[CrossRef]

Bai, Z.

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

Beck, J.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

Bengtsson-Kloo, L.

S. Ulvenlund, L. Bengtsson-Kloo, and K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995).
[CrossRef]

Bengtsson-Kloo, L. A.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

Bjerrum, N. J.

N. J. Bjerrum and G. P. Smith, “Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts,” Inorg. Chem. 6(11), 1968–1972 (1967).
[CrossRef]

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967).
[CrossRef]

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967).
[CrossRef]

Blachnik, R.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Blasse, G.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

Boldyrev, K. N.

Boston, C. R.

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967).
[CrossRef]

C. R. Boston, G. P. Smith, and L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963).
[CrossRef]

C. R. Boston and G. P. Smith, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. I. Evidence for two solute species in the system bismuth-bismuth trichloride,” J. Phys. Chem. 66(6), 1178–1181 (1962).
[CrossRef]

Brendel, C. J.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

B. Krebs, M. Mummert, and C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986).
[CrossRef]

Bufetov, I. A.

Butvina, L. N.

Cao, R.

Chen, D.

Chen, D. P.

Corbett, J. D.

R. M. Friedman and J. D. Corbett, “Synthesis and structural characterization of bismuth(1+)nonabismuth(5+)hexachlorohafnate(IV), BiBi9(HfCl6)3,” Inorg. Chem. 12(5), 1134–1139 (1973).
[CrossRef]

J. D. Corbett, F. C. Albers, and R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968).
[CrossRef]

A. Hershaft and J. D. Corbett, “The crystal structure of bismuth subchloride. Identification of the ion Bi95+,” Inorg. Chem. 2(5), 979–985 (1963).
[CrossRef]

Davis, H. L.

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967).
[CrossRef]

Deki, S.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Denker, B. I.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

Dianov, E. M.

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[CrossRef] [PubMed]

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

E. M. Dianov, “Bi-doped glass optical fibers: is it a new breakthrough in laser materials?” J. Non-Cryst. Solids 355(37-42), 1861–1864 (2009).
[CrossRef]

A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008).
[CrossRef] [PubMed]

Dikarev, E. V.

E. V. Dikarev and B. Li, “Rational syntheses, structure, and properties of the first bismuth(II) carboxylate,” Inorg. Chem. 43(11), 3461–3466 (2004).
[CrossRef] [PubMed]

Fattakhova, Z. T.

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

Firstov, S. V.

Firstova, E. G.

Folkerts, H. F.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

Friedman, R. M.

R. M. Friedman and J. D. Corbett, “Synthesis and structural characterization of bismuth(1+)nonabismuth(5+)hexachlorohafnate(IV), BiBi9(HfCl6)3,” Inorg. Chem. 12(5), 1134–1139 (1973).
[CrossRef]

Fujii, M.

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

Galagan, B. I.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

Gao, H.

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

Guo, X.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

Guryanov, A. N.

Hampel, S.

M. Ruck and S. Hampel, “Stabilization of homonuclear Bi5+ and Bi62+ polycations by cluster anions in the crystal structures of Bi12−xIrCl13−x, Bi12−xRhCl13−x and Bi12−xRhBr13−x,” Polyhedron 21(5-6), 651–656 (2002).
[CrossRef]

Hamstra, M. A.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

Haula, E. V.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

Hayashi, S.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Hershaft, A.

A. Hershaft and J. D. Corbett, “The crystal structure of bismuth subchloride. Identification of the ion Bi95+,” Inorg. Chem. 2(5), 979–985 (1963).
[CrossRef]

Hewak, D. W.

Hönle, W.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Hosokawa, A.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Howick, L. C.

C. R. Boston, G. P. Smith, and L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963).
[CrossRef]

Hughes, M. A.

Jiang, X. W.

Kalpen, H.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Khopin, V. F.

Kondakova, O. A.

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

Korchak, V. N.

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

Krebs, B.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

B. Krebs, M. Mummert, and C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986).
[CrossRef]

Kunkely, H.

H. Kunkely and A. Vogler, “On the origin of the photoluminescence of mercurous chloride,” Chem. Phys. Lett. 240(1-3), 31–34 (1995).
[CrossRef]

Li, B.

E. V. Dikarev and B. Li, “Rational syntheses, structure, and properties of the first bismuth(II) carboxylate,” Inorg. Chem. 43(11), 3461–3466 (2004).
[CrossRef] [PubMed]

Li, H.

Li, J.-G.

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

Lichkova, N. V.

Lisiecki, R.

Liu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

Meng, X. G.

Miwa, Y.

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Mizuhata, M.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Mummert, M.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

B. Krebs, M. Mummert, and C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

Ohishi, Y.

Okhrimchuk, A. G.

Osiko, V. V.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

Osteryoung, R. A.

L. E. Topol, S. J. Yosim, and R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961).
[CrossRef]

Peng, M.

Peng, M. Y.

Peters, K.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Qiu, J.

Qiu, J. R.

Ren, G.

Romanov, A. N.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

Ruan, J.

Ruck, M.

B. Wahl and M. Ruck, “Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern – Synthese, Kristallstruktur und chemische Bindung,” Z. Anorg. Allg. Chem. 634(15), 2873–2879 (2008).
[CrossRef]

M. Ruck and S. Hampel, “Stabilization of homonuclear Bi5+ and Bi62+ polycations by cluster anions in the crystal structures of Bi12−xIrCl13−x, Bi12−xRhCl13−x and Bi12−xRhBr13−x,” Polyhedron 21(5-6), 651–656 (2002).
[CrossRef]

M. Ruck, “Bi34Ir3Br37: Ein pseudosymmetrisches Subbromid aus Bi5+ und Bi62+ Polykationen sowie [IrBi6Br12]– und [IrBi6Br13]2– - Clusteranionen,” Z. Anorg. Allg. Chem. 624(3), 521–528 (1998).
[CrossRef]

Runciman, W. A.

W. A. Runciman, “Absorption and emission spectra of bismuth-activated phosphors,” Proc. Phys. Soc. A 68(7), 647–649 (1955).
[CrossRef]

Ryba-Romanowski, W.

Sakka, Y.

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

Sallach, R. A.

J. D. Corbett, F. C. Albers, and R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968).
[CrossRef]

Schmidt, M. A.

Schwarz, U.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Schwefel, H. G. L.

Shimaoka, F.

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Shirahata, N.

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

Shulman, I. L.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

Smith, G. P.

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967).
[CrossRef]

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967).
[CrossRef]

N. J. Bjerrum and G. P. Smith, “Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts,” Inorg. Chem. 6(11), 1968–1972 (1967).
[CrossRef]

C. R. Boston, G. P. Smith, and L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963).
[CrossRef]

C. R. Boston and G. P. Smith, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. I. Evidence for two solute species in the system bismuth-bismuth trichloride,” J. Phys. Chem. 66(6), 1178–1181 (1962).
[CrossRef]

Solarz, P.

Somer, M.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Sprenger, B.

Ståhl, K.

S. Ulvenlund, L. Bengtsson-Kloo, and K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995).
[CrossRef]

Stankowski, A.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

Su, L.

Sulimov, A. V.

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

Sulimov, V. B.

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

Sun, H.-T.

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, M. Fujii, Y. Sakka, Z. Bai, N. Shirahata, L. Zhang, Y. Miwa, and H. Gao, “Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals,” Opt. Lett. 35(11), 1743–1745 (2010).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Suzuki, T.

Sverchkov, S. E.

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

Topol, L. E.

L. E. Topol, S. J. Yosim, and R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961).
[CrossRef]

Tsvetkov, V. B.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

Ulvenlund, S.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

S. Ulvenlund, L. Bengtsson-Kloo, and K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995).
[CrossRef]

Veber, A. A.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

Vogler, A.

H. Kunkely and A. Vogler, “On the origin of the photoluminescence of mercurous chloride,” Chem. Phys. Lett. 240(1-3), 31–34 (1995).
[CrossRef]

von Schnering, H. G.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

Vtyurina, D. N.

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

Wahl, B.

B. Wahl and M. Ruck, “Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern – Synthese, Kristallstruktur und chemische Bindung,” Z. Anorg. Allg. Chem. 634(15), 2873–2879 (2008).
[CrossRef]

Wang, Q.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

Wondraczek, L.

Wu, F.

Xia, H.

Xu, J.

Yang, Y.

Yosim, S. J.

L. E. Topol, S. J. Yosim, and R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961).
[CrossRef]

Yu, J.

Yu, P.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

Zagorodnev, V. N.

Zhang, L.

Zhao, H.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett. 36(23), 4551–4553 (2011).
[CrossRef] [PubMed]

Zhao, Q. Z.

Zheng, L.

Zhigunov, D. M.

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

Zhou, P.

Zhu, C. S.

Adv. Mater. (Deerfield Beach Fla.)

H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3694–3698 (2009).
[CrossRef]

Appl. Phys. B

B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010).
[CrossRef]

Appl. Phys. Lett.

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett. 97(13), 131908 (2010).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

Chem. Ber.

J. Beck, C. J. Brendel, L. A. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, “The crystal structure of Bi8(AlCl4)2 and the crystal structure, conductivity and theoretical band structure of Bi6Cl7 and related subvalent bismuth halides,” Chem. Ber. 129(10), 1219–1226 (1996).
[CrossRef]

Chem. Phys. Lett.

H. Kunkely and A. Vogler, “On the origin of the photoluminescence of mercurous chloride,” Chem. Phys. Lett. 240(1-3), 31–34 (1995).
[CrossRef]

Inorg. Chem.

A. Hershaft and J. D. Corbett, “The crystal structure of bismuth subchloride. Identification of the ion Bi95+,” Inorg. Chem. 2(5), 979–985 (1963).
[CrossRef]

N. J. Bjerrum and G. P. Smith, “Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts,” Inorg. Chem. 6(11), 1968–1972 (1967).
[CrossRef]

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4 configurations and its application to the spectrum of Bi+ in molten salt media,” Inorg. Chem. 6(6), 1172–1178 (1967).
[CrossRef]

E. V. Dikarev and B. Li, “Rational syntheses, structure, and properties of the first bismuth(II) carboxylate,” Inorg. Chem. 43(11), 3461–3466 (2004).
[CrossRef] [PubMed]

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967).
[CrossRef]

R. M. Friedman and J. D. Corbett, “Synthesis and structural characterization of bismuth(1+)nonabismuth(5+)hexachlorohafnate(IV), BiBi9(HfCl6)3,” Inorg. Chem. 12(5), 1134–1139 (1973).
[CrossRef]

Inorg. Chim. Acta

J. D. Corbett, F. C. Albers, and R. A. Sallach, “An electromotive force studies of solutions of bismuth in bismuth (III) chloride at 240°C,” Inorg. Chim. Acta 2, 22–26 (1968).
[CrossRef]

J. Chem. Soc., Faraday Trans.

S. Ulvenlund, L. Bengtsson-Kloo, and K. Ståhl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solution,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995).
[CrossRef]

J. Less Common Met.

B. Krebs, M. Mummert, and C. J. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986).
[CrossRef]

J. Mater. Chem.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011).
[CrossRef]

J. Non-Cryst. Solids

E. M. Dianov, “Bi-doped glass optical fibers: is it a new breakthrough in laser materials?” J. Non-Cryst. Solids 355(37-42), 1861–1864 (2009).
[CrossRef]

J. Phys. Chem.

C. R. Boston and G. P. Smith, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. I. Evidence for two solute species in the system bismuth-bismuth trichloride,” J. Phys. Chem. 66(6), 1178–1181 (1962).
[CrossRef]

C. R. Boston, G. P. Smith, and L. C. Howick, “Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. II. Formulation of solute equilibrium in bismuth trichloride,” J. Phys. Chem. 67(9), 1849–1852 (1963).
[CrossRef]

L. E. Topol, S. J. Yosim, and R. A. Osteryoung, “E.M.F. measurements in molten bismuth-bismuth trichloride solutions,” J. Phys. Chem. 65(9), 1511–1516 (1961).
[CrossRef]

Num. Meth. Prog.

A. N. Romanov, O. A. Kondakova, D. N. Vtyurina, A. V. Sulimov, and V. B. Sulimov, “Calculation of excited states properties for Bi53+ polycation by the spin-orbit configuration interaction method,” Num. Meth. Prog. 12, 443–449 (2011).

Opt. Express

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551–19561 (2011).
[CrossRef] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroadband near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. L. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater. 33(4), 631–634 (2011).
[CrossRef]

A. N. Romanov, E. V. Haula, Z. T. Fattakhova, A. A. Veber, V. B. Tsvetkov, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “Near-IR luminescence from subvalent bismuth species in fluoride glass,” Opt. Mater. 34(1), 155–158 (2011).
[CrossRef]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[CrossRef]

Polyhedron

M. Ruck and S. Hampel, “Stabilization of homonuclear Bi5+ and Bi62+ polycations by cluster anions in the crystal structures of Bi12−xIrCl13−x, Bi12−xRhCl13−x and Bi12−xRhBr13−x,” Polyhedron 21(5-6), 651–656 (2002).
[CrossRef]

Proc. Phys. Soc. A

W. A. Runciman, “Absorption and emission spectra of bismuth-activated phosphors,” Proc. Phys. Soc. A 68(7), 647–649 (1955).
[CrossRef]

Z. Anorg. Allg. Chem.

H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. von Schnering, and R. Blachnik, “Bismut(II)-chalkogenometallate(III) Bi2M4X8, Verbindungen mit Bi24+-Hanteln (M=Al, Ga; X=S,Se),” Z. Anorg. Allg. Chem. 624(7), 1137–1147 (1998).
[CrossRef]

M. Ruck, “Bi34Ir3Br37: Ein pseudosymmetrisches Subbromid aus Bi5+ und Bi62+ Polykationen sowie [IrBi6Br12]– und [IrBi6Br13]2– - Clusteranionen,” Z. Anorg. Allg. Chem. 624(3), 521–528 (1998).
[CrossRef]

B. Wahl and M. Ruck, “Ag3Bi14Br21: ein Subbromid mit Bi24+-Hanteln und Bi95+-Polyedern – Synthese, Kristallstruktur und chemische Bindung,” Z. Anorg. Allg. Chem. 634(15), 2873–2879 (2008).
[CrossRef]

Other

S. Pedersen, “Viscosity, structure and glass formation in the AlCl3-ZnCl2 system,” Ph.D thesis (Institutt for Kjemi, Norges Tekniskurn-Naturvitenskaplige Universitet, 2001).

N. A. Alexeev, V. P. Gapontsev, M. E. Zhabotinskii, V. B. Kravchenko, and Yu. P. Rudnitskii, Laser Phosphate Glasses (Nauka, Moscow, 1980), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sealed L-shaped fused silica cell with thin layer of AlCl3/ZnCl2/BiCl3 glass. The glass orange color is due to the presence of subvalent bismuth species (mainly Bi53+ polycation).

Fig. 2
Fig. 2

(a) Absorption spectrum of AlCl3/ZnCl2/BiCl3 glass, containing subvalent bismuth species; (b) Photoluminescence spectra of AlCl3/ZnCl2/BiCl3 glass (300K), excited at different wavelengths normalized with respect to the 1320 nm emission.

Fig. 3
Fig. 3

(a) Photoluminescence spectra of AlCl3/ZnCl2/BiCl3 glass, measured at 77 and 300K (excitation wavelength λex = 532 nm). The spectrum at 77K composed from two separate measurements: at short waves (with InGaAs detector), and at long waves (with InSb detector); (b) Photoluminescence excitation spectra, measured for three luminescence bands. Spectra of the first and the second bands (λem = 1060 nm and λem = 1300nm, respectively) were measured at 300K. Excitation spectrum of the third band (λem = 1900 nm) was measured at 77K.

Fig. 4
Fig. 4

Low temperature (77K) luminescence decay curves measured at 1350nm(a), 1900nm(b) and 1050nm(c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Bi 5 3 + + Bi 3 + 6Bi +
BiCl 3 + Zn Bi + + ZnCl 2 + Cl
5BiCl 3 + 6Zn Bi 5 3 + + 6ZnCl 2 + 3Cl
Bi + + Bi 3 + Bi 2 4 +

Metrics