Abstract

We present optical properties of crescent-shaped dielectric nano-rods that comprise a square lattice periodic structure named as crescent-shaped photonic crystals (CPC). The circular symmetry of individual cells of periodic dielectric structures is broken by replacing each unit cell with a reduced symmetry crescent shaped structure. The created configuration is assumed to be formed by the intersection of circular dielectric and air rods. The degree of freedom to manipulate the light propagation arises due to the rotational sensitivity of the CPC. The interesting dispersion property of designed CPC occurs due to the anisotropic nature of the iso-frequency contours that yield tilted self-collimated wave guiding. Furthermore, this feature allows focusing, routing, splitting and deflecting light beams along certain routes which are independent of the lattice symmetry directions of regular PCs. The propagation direction of light can be tuned by means of the opening angle of the crescent shape. Finally, the property of being all-dielectric structure ensures the absence of optical absorption losses that are reminiscent of employed metallic nano-particles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of the Light (Princeton, NJ: Princeton Univ. Press, 1995).
  2. P. R. Villeneuve, M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
    [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]
  4. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
    [CrossRef]
  5. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
    [CrossRef]
  6. H. Kurt, I. H. Giden, K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28(3), 495–501 (2011).
    [CrossRef]
  7. M. Lončar, J. Vučković, A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B 18(9), 1362–1368 (2001).
    [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
    [CrossRef]
  9. S. Foteinopoulou, C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67(23), 235107 (2003).
    [CrossRef]
  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
    [CrossRef]
  11. D. Chigrin, S. Enoch, C. Sotomayor Torres, G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11(10), 1203–1211 (2003).
    [CrossRef] [PubMed]
  12. Z. Y. Li, B. Y. Gu, G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
    [CrossRef]
  13. H. Kurt, D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
    [CrossRef] [PubMed]
  14. X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
    [CrossRef]
  15. H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
    [CrossRef]
  16. B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
    [CrossRef]
  17. Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
    [CrossRef]
  18. J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
    [CrossRef]
  19. H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
    [CrossRef]
  20. H. Kurt, D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15(3), 1240–1253 (2007).
    [CrossRef] [PubMed]
  21. E. Centeno, D. Cassagne, J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
    [CrossRef]
  22. H. Kurt, D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
    [CrossRef]
  23. C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
    [CrossRef]
  24. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
    [CrossRef]
  25. B. Vasić, R. Gajić, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110(5), 053103 (2011).
    [CrossRef]
  26. M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
    [CrossRef]
  27. B. Vasić, G. Isić, R. Gajić, K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010).
    [CrossRef] [PubMed]
  28. I. Khromova, L. Melnikov, “Anisotropic photonic crystals: generalized plane wave method and dispersion symmetry properties,” Opt. Commun. 281(21), 5458–5466 (2008).
    [CrossRef]
  29. H. Xie, Y. Y. Lu, “Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. A 26(7), 1606–1614 (2009).
    [CrossRef] [PubMed]
  30. B. Rezaei, M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 282(8), 1584–1588 (2009).
    [CrossRef]
  31. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
    [CrossRef]
  32. C. S. Kee, K. Kim, H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B 338(1-4), 153–158 (2003).
    [CrossRef]
  33. T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
    [CrossRef]
  34. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express 16(19), 14812–14820 (2008).
    [CrossRef] [PubMed]
  35. F. Guan, Z. Lin, J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter 17(33), L343– L349 (2005).
    [CrossRef]
  36. A. I. Cabuz, E. Centeno, D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett. 84(12), 2031–2033 (2004).
    [CrossRef]
  37. Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
    [CrossRef]
  38. Y. Ogawa, Y. Omura, Y. Iida, “Study on Self-collimated light-focusing device using the 2-D Photonic Crystal with a Parallelogram Lattice,” J. Lightwave Technol. 23(12), 4374–4381 (2005).
    [CrossRef]
  39. D. Gao, Z. Zhou, D. S. Citrin, “Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice,” J. Opt. Soc. Am. A 25(3), 791–795 (2008).
    [CrossRef] [PubMed]
  40. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69(5), 742–756 (1979).
    [CrossRef]
  41. S. Johnson, J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  42. D. E. Aspnes, “Local-Field Effects and Effective-Medium Theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
    [CrossRef]
  43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).
  44. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  45. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons; Press, 1983).
  46. G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
    [CrossRef]
  47. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
    [CrossRef]
  48. R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
    [CrossRef]
  49. P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12(9), 1996–2001 (2004).
    [CrossRef] [PubMed]

2011

H. Kurt, I. H. Giden, K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28(3), 495–501 (2011).
[CrossRef]

H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
[CrossRef]

H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
[CrossRef]

C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
[CrossRef]

B. Vasić, R. Gajić, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110(5), 053103 (2011).
[CrossRef]

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

2010

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

B. Vasić, G. Isić, R. Gajić, K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010).
[CrossRef] [PubMed]

Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
[CrossRef]

2009

J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[CrossRef]

H. Xie, Y. Y. Lu, “Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. A 26(7), 1606–1614 (2009).
[CrossRef] [PubMed]

B. Rezaei, M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 282(8), 1584–1588 (2009).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

2008

D. Gao, Z. Zhou, D. S. Citrin, “Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice,” J. Opt. Soc. Am. A 25(3), 791–795 (2008).
[CrossRef] [PubMed]

R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express 16(19), 14812–14820 (2008).
[CrossRef] [PubMed]

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

I. Khromova, L. Melnikov, “Anisotropic photonic crystals: generalized plane wave method and dispersion symmetry properties,” Opt. Commun. 281(21), 5458–5466 (2008).
[CrossRef]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

2007

H. Kurt, D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15(3), 1240–1253 (2007).
[CrossRef] [PubMed]

H. Kurt, D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

2006

E. Centeno, D. Cassagne, J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

2005

Y. Ogawa, Y. Omura, Y. Iida, “Study on Self-collimated light-focusing device using the 2-D Photonic Crystal with a Parallelogram Lattice,” J. Lightwave Technol. 23(12), 4374–4381 (2005).
[CrossRef]

F. Guan, Z. Lin, J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter 17(33), L343– L349 (2005).
[CrossRef]

H. Kurt, D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

2004

A. I. Cabuz, E. Centeno, D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett. 84(12), 2031–2033 (2004).
[CrossRef]

R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
[CrossRef]

P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12(9), 1996–2001 (2004).
[CrossRef] [PubMed]

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

2003

C. S. Kee, K. Kim, H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B 338(1-4), 153–158 (2003).
[CrossRef]

D. Chigrin, S. Enoch, C. Sotomayor Torres, G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11(10), 1203–1211 (2003).
[CrossRef] [PubMed]

S. Foteinopoulou, C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67(23), 235107 (2003).
[CrossRef]

2001

2000

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

1999

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

1998

Z. Y. Li, B. Y. Gu, G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

1994

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

1993

1992

P. R. Villeneuve, M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

1990

K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

1982

D. E. Aspnes, “Local-Field Effects and Effective-Medium Theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
[CrossRef]

1979

Albert, J. P.

E. Centeno, D. Cassagne, J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

Alcubilla, R.

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

Almeida, R. V.

R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Local-Field Effects and Effective-Medium Theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Bettiol, A. A.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Blair, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Borel, P.

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Cabuz, A. I.

A. I. Cabuz, E. Centeno, D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett. 84(12), 2031–2033 (2004).
[CrossRef]

Caglayan, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

Cakmak, O.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

Cassagne, D.

E. Centeno, D. Cassagne, J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

A. I. Cabuz, E. Centeno, D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett. 84(12), 2031–2033 (2004).
[CrossRef]

Centeno, E.

E. Centeno, D. Cassagne, J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

A. I. Cabuz, E. Centeno, D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett. 84(12), 2031–2033 (2004).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Chandra, D.

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

Chau, Y. F.

H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
[CrossRef]

Chen, X. J.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

Chen, Y.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Cheng, S. C.

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

Chigrin, D.

Citrin, D. S.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

D. Gao, Z. Zhou, D. S. Citrin, “Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice,” J. Opt. Soc. Am. A 25(3), 791–795 (2008).
[CrossRef] [PubMed]

H. Kurt, D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15(3), 1240–1253 (2007).
[CrossRef] [PubMed]

H. Kurt, D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

H. Kurt, D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

Colak, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

Danner, A. J.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

Enoch, S.

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Fathollahi Khalkhali, T.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[CrossRef]

Feng, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Feng, Z.

Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
[CrossRef]

Foteinopoulou, S.

S. Foteinopoulou, C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67(23), 235107 (2003).
[CrossRef]

Frandsen, L.

Gajic, R.

B. Vasić, R. Gajić, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110(5), 053103 (2011).
[CrossRef]

B. Vasić, G. Isić, R. Gajić, K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010).
[CrossRef] [PubMed]

Gao, D.

J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
[CrossRef]

D. Gao, Z. Zhou, D. S. Citrin, “Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice,” J. Opt. Soc. Am. A 25(3), 791–795 (2008).
[CrossRef] [PubMed]

Gao, T.

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

Giden, I. H.

Gösele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Gu, B. Y.

Z. Y. Li, B. Y. Gu, G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

Guan, F.

F. Guan, Z. Lin, J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter 17(33), L343– L349 (2005).
[CrossRef]

Guo, Q.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

Hao, R.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Harpøth, A.

Hingerl, K.

Ho, H. F.

H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Hou, J.

J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
[CrossRef]

Hu, W.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

Huang, T. J.

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

Iida, Y.

Isic, G.

Jensen, J.

Jia, W.

H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
[CrossRef]

Jiang, L. Y.

H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Johnson, S.

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Jones, M. D.

R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
[CrossRef]

Juluri, B. K.

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

Kalafi, M.

B. Rezaei, M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 282(8), 1584–1588 (2009).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[CrossRef]

Kawaguchi, S.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Kawata, S.

Kee, C. S.

C. S. Kee, K. Kim, H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B 338(1-4), 153–158 (2003).
[CrossRef]

Khromova, I.

I. Khromova, L. Melnikov, “Anisotropic photonic crystals: generalized plane wave method and dispersion symmetry properties,” Opt. Commun. 281(21), 5458–5466 (2008).
[CrossRef]

Kikkawa, J. M.

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

Kim, H. B.

R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
[CrossRef]

Kim, K.

C. S. Kee, K. Kim, H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B 338(1-4), 153–158 (2003).
[CrossRef]

Kiraly, B.

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

Kong, L.

Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Kristensen, M.

Kurt, H.

H. Kurt, I. H. Giden, K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28(3), 495–501 (2011).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

H. Kurt, D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

H. Kurt, D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15(3), 1240–1253 (2007).
[CrossRef] [PubMed]

H. Kurt, D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

Lan, S.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

Lang Teo, S.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Li, X. Y.

H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
[CrossRef]

Li, Z. Y.

Z. Y. Li, B. Y. Gu, G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

Lim, H.

C. S. Kee, K. Kim, H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B 338(1-4), 153–158 (2003).
[CrossRef]

Lin, S.-C. S.

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

Lin, Z.

F. Guan, Z. Lin, J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter 17(33), L343– L349 (2005).
[CrossRef]

Loncar, M.

Lu, M.

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

Lu, Y. Y.

Marsal, L. F.

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

Melnikov, L.

I. Khromova, L. Melnikov, “Anisotropic photonic crystals: generalized plane wave method and dispersion symmetry properties,” Opt. Commun. 281(21), 5458–5466 (2008).
[CrossRef]

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Niemi, T.

C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

Ogawa, Y.

Omura, Y.

Ozbay, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

Pallarès, J.

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

Panepucci, R. R.

R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
[CrossRef]

Peng, C.

C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
[CrossRef]

Pessa, M.

C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
[CrossRef]

Piche, M.

P. R. Villeneuve, M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

Proietti Zaccaria, R.

Rezaei, B.

B. Rezaei, M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 282(8), 1584–1588 (2009).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[CrossRef]

Rodríguez, A.

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Scherer, A.

Shi, P.

Shoji, S.

Si, G.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

Sigmund, O.

Soltani Vala, A.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[CrossRef]

Sotomayor Torres, C.

Soukoulis, C. M.

S. Foteinopoulou, C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67(23), 235107 (2003).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Summers, C. J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

Tan, C.

C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
[CrossRef]

Tayeb, G.

Teng, J.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

Teo, E. J.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Trifonov, T.

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

Ustun, K.

van Driel, H. M.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

Vasic, B.

B. Vasić, R. Gajić, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110(5), 053103 (2011).
[CrossRef]

B. Vasić, G. Isić, R. Gajić, K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010).
[CrossRef] [PubMed]

Verma, P.

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

P. R. Villeneuve, M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

Vuckovic, J.

Wu, F. L.

H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
[CrossRef]

Wu, H.

H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
[CrossRef]

J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
[CrossRef]

Wu, L. J.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

Xie, H.

Xu, Y.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

Yablonovitch, E.

Yang, G. Z.

Z. Y. Li, B. Y. Gu, G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

Yang, S.

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

Yeh, H. Y.

H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
[CrossRef]

Yeh, P.

Zhang, Y.

Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
[CrossRef]

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

Zheng, Z.

Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
[CrossRef]

Zhou, Z.

J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

D. Gao, Z. Zhou, D. S. Citrin, “Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice,” J. Opt. Soc. Am. A 25(3), 791–795 (2008).
[CrossRef] [PubMed]

Zhu, X.

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

Zi, J.

F. Guan, Z. Lin, J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter 17(33), L343– L349 (2005).
[CrossRef]

Am. J. Phys.

D. E. Aspnes, “Local-Field Effects and Effective-Medium Theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
[CrossRef]

Appl. Phys. Lett.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93(17), 171108 (2008).
[CrossRef]

A. I. Cabuz, E. Centeno, D. Cassagne, “Superprism effect in bidimensional rectangular photonic crystals,” Appl. Phys. Lett. 84(12), 2031–2033 (2004).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa, S. Yang, “Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93(16), 161911 (2008).
[CrossRef]

H. F. Ho, Y. F. Chau, H. Y. Yeh, F. L. Wu, “Complete bandgap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98(26), 263115 (2011).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370–1372 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Kurt, D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

J. Appl. Phys.

B. Vasić, R. Gajić, “Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys. 110(5), 053103 (2011).
[CrossRef]

M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, T. J. Huang, “Beam Aperture Modification and Beam Deflection Using Gradient-Index Photonic Crystals,” J. Appl. Phys. 108(10), 103505 (2010).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt.

H. Wu, L. Y. Jiang, W. Jia, X. Y. Li, “Imaging properties of an annular photonic crystal slab for both TM-polarization and TE-polarization,” J. Opt. 13(9), 095103 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A, Pure Appl. Opt. 10(8), 085201 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

F. Guan, Z. Lin, J. Zi, “Opening up complete photonic bandgaps by tuning the orientation of birefringent dielectric spheres in three-dimensional photonic crystals,” J. Phys. Condens. Matter 17(33), L343– L349 (2005).
[CrossRef]

J. Vac. Sci. Technol. B

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205–021209 (2011).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

R. R. Panepucci, H. B. Kim, R. V. Almeida, M. D. Jones, “Photonic crystals in polymers by direct electron-beam lithography presenting a photonic band gap,” J. Vac. Sci. Technol. B 22(6), 3348–3351 (2004).
[CrossRef]

Opt. Commun.

I. Khromova, L. Melnikov, “Anisotropic photonic crystals: generalized plane wave method and dispersion symmetry properties,” Opt. Commun. 281(21), 5458–5466 (2008).
[CrossRef]

B. Rezaei, M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 282(8), 1584–1588 (2009).
[CrossRef]

C. Tan, T. Niemi, C. Peng, M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284(12), 3140–3143 (2011).
[CrossRef]

J. Hou, D. Gao, H. Wu, Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282(15), 3172–3176 (2009).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[CrossRef]

Opt. Express

Optoelectron. Lett.

Y. Zhang, L. Kong, Z. Feng, Z. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6(4), 281–283 (2010).
[CrossRef]

Phys. Rev. B

S. Foteinopoulou, C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67(23), 235107 (2003).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

E. Centeno, D. Cassagne, J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389– R2392 (2000).
[CrossRef]

T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69(23), 235112 (2004).
[CrossRef]

Phys. Rev. B Condens. Matter

P. R. Villeneuve, M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B Condens. Matter 46(8), 4969–4972 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Z. Y. Li, B. Y. Gu, G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

Physica B

C. S. Kee, K. Kim, H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B 338(1-4), 153–158 (2003).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons; Press, 1983).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of the Light (Princeton, NJ: Princeton Univ. Press, 1995).

Supplementary Material (2)

» Media 1: MOV (2311 KB)     
» Media 2: MOV (2236 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The designed crescent-shaped PC (CPC). The refractive index of the dielectric rod is n = 3.13 and the radii of two rods are R1 = R2 = 0.30a The distance between the circles is D = R1 = R2 (b) Finite size square lattice CPC structure is created. (c) Brillouin zone of the structure.

Fig. 2
Fig. 2

The operating frequency contours of the different crescent open-angle, θ . The operating frequencies are a / λ = 0.416 in (a) a / λ = 0.39 in (b) and a / λ = 0.412 in (c). The media file presents IFCs of different crescent open angle that varies from 0° to 90° (Media 1).

Fig. 3
Fig. 3

The steady state e-field intensity distribution of CPC structure is shown. (a) θ = 30 0 (b) θ = + 30 0 and (c) θ = 0 0 . (d) The schematic view of the locations of focal points and the output angle α variations for different θ values.

Fig. 4
Fig. 4

The dependency of α to θ parameter is sketched. There are three operational frequencies used for each region. The different colors designate the three regions.

Fig. 5
Fig. 5

(a) Iso-frequency contours corresponding to the second band of the CPC with a crescent open angle θ = 30 0 The observed tilted self collimation characteristics along different propagation directions are presented in (b) and (c). The yellow boxes in (b) and (c) show the location of CPC. The normalized frequency is taken to be 0.416.

Fig. 6
Fig. 6

The representation of the construction methods of CPCs for various application areas: (a) the design of beam-splitting and (b) beam-deflectors and routers.

Fig. 7
Fig. 7

A composite CPC set up and steady-state electric field distribution. The cascade structure is obtained by combining two-block of CPC, one is negative θ and the second part has positive θ . The blue and red colors correspond to minimum and maximum values of e-field’s amplitude. Black arrow shows the location of source and the dashed-white one demonstrates the path of the propagation

Fig. 8
Fig. 8

Beam splitter configuration. The upper and lower parts of the CPC have opposite angle θ = ± 20 0 . (a) The steady-state intensity distribution of electric field throughout the structure (Media 2). (b) The transverse intensity profile at the end of the structure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v g ( x , y ) = k ω ( k = ( k x , k y ) ) = ω k x x ^ + ω k y y ^ ,

Metrics