Abstract

For a GaAs filled metallic hole array on a pre-epi GaAs substrate, the free carriers, generated by three-photon absorption (3PA) assisted by strongly enhanced local fields, reduce the refractive index of GaAs in ~200-nm thick active area through band filling and free carrier absorption. Therefore, the surface plasma wave (SPW) resonance, and the related second harmonic (SH) spectrum blue shifts with increasing fluence; For the plasmonic structure on a substrate with surface defects, free carrier recombination dominates. The band gap emission spectral peak wavelength decreases 10-nm with increasing fluence, showing the transition from nonradiative-, at low excitation, to bimolecular-recombination at high carrier concentrations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [CrossRef] [PubMed]
  2. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
    [CrossRef] [PubMed]
  3. J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. J. Brueck, “Infrared transmission resonances in double layered, complementary-structure metallic Gratings,” Opt. Express 15, 8737–8744 (2007).
  4. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
    [CrossRef]
  5. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
    [CrossRef] [PubMed]
  6. F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett. 34(13), 1997–1999 (2009).
    [CrossRef] [PubMed]
  7. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
    [CrossRef] [PubMed]
  8. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [CrossRef] [PubMed]
  9. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
    [CrossRef] [PubMed]
  10. J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
    [CrossRef]
  11. R. H. Ritchie, “Plasma loss by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [CrossRef]
  12. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [CrossRef]
  13. J. Zhang and S. R. J. Brueck, “Multi-photon absorption and second harmonic generation in GaAs-Filled Nanoplasmonic Arrays,” in Asia Communications and Photonics Conference and Exhibition (ACP)(Academic,Shanghai, China, 2009)
  14. J. Zhang, “Metallic photonic crystals: transmission resonance and second harmonic generation,” (Ph. D thesis of University of New Mexico, 2009), Chap. 4. http://repository.unm.edu/handle/1928/10357
  15. R. Schroeder and B. Ullrich, “Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment,” Opt. Lett. 27(15), 1285–1287 (2002).
    [CrossRef] [PubMed]
  16. J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
    [CrossRef]
  17. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
    [CrossRef] [PubMed]
  18. M. P. Hasselbeck, E. W. Van Stryland, and M. Sheik-Bahae, “Scaling of four-photon absorption in InAs,” J. Opt. Soc. Am. B 14(7), 1616–1624 (1997).
    [CrossRef]
  19. R. Braunstein and E. O. Kane, “Valance band structure of III-V compounds,” J. Phys. Chem. Solids 23(10), 1423–1431 (1962).
    [CrossRef]
  20. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Addison-Wesley, Reading, Mass., 1960), p. 260.
  21. C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981).
    [CrossRef]

2011

J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

2010

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

2009

2007

2006

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

2005

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

2002

1997

1994

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

1990

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

1981

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981).
[CrossRef]

1962

R. Braunstein and E. O. Kane, “Valance band structure of III-V compounds,” J. Phys. Chem. Solids 23(10), 1423–1431 (1962).
[CrossRef]

1957

R. H. Ritchie, “Plasma loss by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

Aitchison, J. S.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Alamo, J. A. D.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Al-hemyari, K.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Alivisatos, A. P.

J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[CrossRef] [PubMed]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Benichou, E.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Bertness, K. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981).
[CrossRef]

Braunstein, R.

R. Braunstein and E. O. Kane, “Valance band structure of III-V compounds,” J. Phys. Chem. Solids 23(10), 1423–1431 (1962).
[CrossRef]

Brevet, P. F.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Brueck, S. R. J.

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. J. Brueck, “Infrared transmission resonances in double layered, complementary-structure metallic Gratings,” Opt. Express 15, 8737–8744 (2007).

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Busch, K.

Butet, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Chen, K.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Durak, C.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Ewers, T.

J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[CrossRef] [PubMed]

Fan, W.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Fejer, M. M.

Feth, N.

Frauenglass, A.

Gieseler, J.

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Hains, C.

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Hasselbeck, M. P.

Heflin, J. R.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Henry, C. H.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981).
[CrossRef]

Hurlbut, W. C.

Ironside, C. N.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Jain, P. K. I.

J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[CrossRef] [PubMed]

Jonin, C.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Kane, E. O.

R. Braunstein and E. O. Kane, “Valance band structure of III-V compounds,” J. Phys. Chem. Solids 23(10), 1423–1431 (1962).
[CrossRef]

Kang, J. U.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Krishna, S.

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

Kuo, P. S.

Lee, Y.-S.

Li, D.

Linden, S.

Logan, R. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981).
[CrossRef]

Luther, J. M.

J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[CrossRef] [PubMed]

Malloy, K. J.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Neumann, A.

Niegemann, J.

Niesler, F. B. P.

Osgood, R. M.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

Panoiu, N.-C.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, “Plasma loss by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Robinson, H. D.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

Russier-Antoine, I.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Schroeder, R.

Sheik-Bahae, M.

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

M. P. Hasselbeck, E. W. Van Stryland, and M. Sheik-Bahae, “Scaling of four-photon absorption in InAs,” J. Opt. Soc. Am. B 14(7), 1616–1624 (1997).
[CrossRef]

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Stegeman, G. I.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Ullrich, B.

Van Stryland, E. W.

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Villeneuve, A.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

Vodopyanov, K. L.

Wang, L.

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

Wegener, M.

Zhang, J.

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. J. Brueck, “Infrared transmission resonances in double layered, complementary-structure metallic Gratings,” Opt. Express 15, 8737–8744 (2007).

Zhang, S.

J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. J. Brueck, “Infrared transmission resonances in double layered, complementary-structure metallic Gratings,” Opt. Express 15, 8737–8744 (2007).

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65(2), 147 (1994).
[CrossRef]

IEEE J. Quantum Electron.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

J. Appl. Phys.

C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52(7), 4457–4461 (1981).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

R. Braunstein and E. O. Kane, “Valance band structure of III-V compounds,” J. Phys. Chem. Solids 23(10), 1423–1431 (1962).
[CrossRef]

Nano Lett.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006).
[CrossRef]

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7(2), 254–258 (2007).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Nat. Mater.

J. M. Luther, P. K. I. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

R. H. Ritchie, “Plasma loss by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Phys. Rev. B

J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83(16), 165438 (2011).
[CrossRef]

Phys. Rev. Lett.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Science

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Other

J. Zhang and S. R. J. Brueck, “Multi-photon absorption and second harmonic generation in GaAs-Filled Nanoplasmonic Arrays,” in Asia Communications and Photonics Conference and Exhibition (ACP)(Academic,Shanghai, China, 2009)

J. Zhang, “Metallic photonic crystals: transmission resonance and second harmonic generation,” (Ph. D thesis of University of New Mexico, 2009), Chap. 4. http://repository.unm.edu/handle/1928/10357

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Addison-Wesley, Reading, Mass., 1960), p. 260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

At 297K, for the plasmonic structure on a 500µm double polished pre-epi GaAs substrate, (a) BE (PL) spectral peak only slightly shifts (~890 nm); (b) SH spectral peak blueshifts from 1045 to 1023-nm with increasing fluencies from 7- to 127-GW/cm2.

Fig. 2
Fig. 2

At 297K, for the plasmon-coupled structure on a double polished 500 µm thick double polished pre-epi GaAs substrate, the spectral peak and linewidth (measured in squares and simulated in solid line) variation with increasing fluences: (a) SHG spectral peaks blueshift from 1045- to 1023-nm shows strong refractive index changes due to bandfilling (in red) and free carrier absorption (FCA) (in blue) and the combined effects (bandfilling and FCA in green); (b) BE spectral peak wavelength (PL) shows 3PA generated carriers recombination without obvious spectral shifting; (c) Linewidth of SHG spectra are broadened from 30- to 58-nm, evidencing the negative Δn with increasing fluences; (d) the linewidth of BE spectrum does not show obvious linewidth broadening.

Fig. 5
Fig. 5

At 77K, for the plasmon-coupled structure on a 20 µm thick GaAs substrate with surface defects by acid etching, the spectral variation of SHG and BE vs fundamental intensity in linear-log plots: (a) SHG spectrum keeps constant at 1030-nm with 2060-nm fundamental wavelength and (b) BE spectrum wavelength shows constant at ~827-nm with increasing fluences. Linewidth of SHG spectra (c) and BE spectra (d) are constant at 20- and 10-nm with increasing input peak power respectively.

Fig. 4
Fig. 4

At 297K, for the plasmon-coupled structure on a 20 µm thick GaAs substrate with surface defects by wet etching, the spectral variation of SHG and BE vs the increasing fluences in linear-log plots: (a) SHG spectrum is constant at 1045-nm with 2090-nm fundamental wavelength at low irradiance (1- to 10-GW/cm2) and shows minor refractive index changes (5-nm) at high irradiance (10- to 100-GW/cm2) and (b) BE (PL) spectrum wavelength shows optical frequency switch from 900- to 887-nm with increase of fluence from 25 to 50 GW/cm2. (c) Linewidths of the SHG spectra are unchanged from 1- to 100-GW/cm2; (d) the BE spectrum shows an averaged 45nm linewidth.

Fig. 3
Fig. 3

(a) At 297K, for the plasmon-coupled structure on a 20 µm wet etched GaAs substrate with surface defects, SHG intensity (solid square) I ∝ Iω2 at input peak power < 10 GW/cm2, and then I ∝ Iω0.7 at input peak power > 10 GW/cm2; The BE intensity (unfilled square) showed IBE ∝ Iω2.5at input peak power from 10- to 25 GW/cm2, IBE ∝ Iω9 at input peak powers from 25- to 40 GW/cm2, and IBE ∝ Iω2.6at fundamental power > 40 GW/cm2. (b) The simulated radiative recombination carrier density vs. input peak power with τNR = 0.1 ns in log-log plot.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d N e d t = ρ 3 P A K 3 P A ( ω , ω , ω ) 3 ω I ω 3 N e T 1
n ω c t I ω ( t ) = ρ 3 P A K 3 P A ( ω , ω , ω ) I ω 3 σ h ( ω ) N e I ω
Δ n b a n d f i l l i n g ( N e , ω ) = c P π 0 α ( N e , ω ) α ( 0 , ω ) ω 2 ω 2 d ω
Δ n f r e e c a r r i e r ( N e , ω ) = ( e 2 λ 2 8 π 2 c 2 ε 0 n ω ) ( N e m e + N h ( m h h 1 / 2 + m l h 1 / 2 m h h 3 / 2 + m l h 3 / 2 ) )
n ( N e , ω ) = n 0 ( ω ) + Δ n b a n d f i l l i n g ( N e , ω ) + Δ n f r e e c a r r i e r ( N e , ω )
λ S P W ( N e ) = Λ m ( Re n ( N e , ω ) 2 ε m n ( N e , ω ) 2 + ε m ± sin θ )
Δ ω = ϕ t = ω L c n t ω L c Δ n t p

Metrics