Abstract

All-optical-fiber Fabry-Perot interferometers (FPIs) with microcavities of different shapes were investigated. It was found that the size and shape of the cavity plays an important role on the performance of these interferometers. To corroborate the analysis, FPIs with spheroidal cavities were fabricated by splicing a photonic crystal fiber (PCF) with large voids and a conventional single mode fiber (SMF), using an ad hoc splicing program. It was found that the strain sensitivity of FPIs with spheroidal cavities can be controlled through the dimensions of the spheroid. For example, a FPI whose cavity had a size of ~10x60 μm exhibited strain sensitivity of ~10.3 pm/με and fringe contrast of ~38 dB. Such strain sensitivity is ~10 times larger than that of the popular fiber Bragg gratings (~1.2 pm/με) and higher than that of most low-finesse FPIs. The thermal sensitivity of our FPIs is extremely low (~1pm/°C) due to the air cavities. Thus, a number of temperature-independent ultra-sensitive microscopic sensors can be devised with the interferometers here proposed since many parameters can be converted to strain. To this end, simple vibration sensors are demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  2. J.-H. Chen, X.-G. Huang, and Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010).
    [CrossRef]
  3. C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
    [CrossRef]
  4. N. V. Wheeler, M. D. W. Grogan, T. D. Bradley, F. Couny, T. A. Birks, and F. Benabid, “Multipass hollow core-pcf microcell using a tapered micromirror,” J. Lightwave Technol. 29(9), 1314–1318 (2011).
    [CrossRef]
  5. S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
    [CrossRef] [PubMed]
  6. C. Tuck, R. Hague, and C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006).
    [CrossRef]
  7. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
    [CrossRef] [PubMed]
  8. E. Cibula and D. Donlagic, “In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15(14), 8719–8730 (2007).
    [CrossRef] [PubMed]
  9. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [CrossRef] [PubMed]
  10. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  11. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
    [CrossRef]
  12. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [CrossRef] [PubMed]
  13. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
    [CrossRef]
  14. E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
    [CrossRef]
  15. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [CrossRef] [PubMed]
  16. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
    [CrossRef] [PubMed]
  17. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  18. A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
    [CrossRef]
  19. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
    [CrossRef] [PubMed]
  20. M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
    [CrossRef]
  21. T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
    [CrossRef]

2012 (1)

C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[CrossRef]

2011 (3)

2010 (2)

J.-H. Chen, X.-G. Huang, and Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010).
[CrossRef]

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[CrossRef]

2009 (1)

2008 (4)

T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[CrossRef]

T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (3)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

C. Tuck, R. Hague, and C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995 (1)

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Albert, J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Benabid, F.

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Birks, T. A.

Bouwmans, G.

Bradley, T. D.

Calisti Tassini, C.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

Cerami, L. R.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

Chen, C.

Chen, J.-H.

J.-H. Chen, X.-G. Huang, and Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010).
[CrossRef]

Chen, X.

Cheng, G.-H.

Cibula, E.

Couny, F.

Coviello, G.

Cusano, A.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

D’Altrui, G.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Deng, M.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[CrossRef] [PubMed]

Ding, X.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[CrossRef]

Dong, X.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Donlagic, D.

Doyle, C.

C. Tuck, R. Hague, and C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006).
[CrossRef]

Duan, D. W.

Duan, D.-W.

Favero, F. C.

Finazzi, V.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Gattass, R. R.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

Giordano, M.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

Grogan, M. D. W.

Guo, T.

Hague, R.

C. Tuck, R. Hague, and C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006).
[CrossRef]

Han, Y.

Hsu, J.

C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[CrossRef]

Huang, X.-G.

J.-H. Chen, X.-G. Huang, and Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010).
[CrossRef]

Huang, Z.

Huang, Z.-J.

J.-H. Chen, X.-G. Huang, and Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010).
[CrossRef]

Hwang, H.

C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[CrossRef]

Ivanov, A.

Jin, L.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Kai, G.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Kamata, M.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

Ke, T.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Laudati, A.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lee, C.

C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[CrossRef]

Lee, L.

C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[CrossRef]

Li, E.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[CrossRef]

Li, Y.

T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Lu, F.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Mazur, E.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

Mennella, F.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

Obara, M.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Peng, G. D.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[CrossRef]

Pevec, S.

Pruneri, V.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Rao, Y. J.

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[CrossRef]

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[CrossRef] [PubMed]

Rao, Y.-J.

Shen, F.

Shi, Q.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Tsai, H.-L.

Tuck, C.

C. Tuck, R. Hague, and C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006).
[CrossRef]

Villatoro, J.

Wang, A.

Wang, Z.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
[CrossRef] [PubMed]

Wei, T.

Wheeler, N. V.

Xiao, H.

Yang, X. C.

Yang, X.-C.

Zhang, H.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Zhu, T.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, “Optical vibration sensor fabricated by femtosecond laser micromachining,” Appl. Phys. Lett. 87(5), 051106 (2005).
[CrossRef]

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. Calisti Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[CrossRef]

C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[CrossRef]

J. Lightwave Technol. (3)

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-Line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

N. V. Wheeler, M. D. W. Grogan, T. D. Bradley, F. Couny, T. A. Birks, and F. Benabid, “Multipass hollow core-pcf microcell using a tapered micromirror,” J. Lightwave Technol. 29(9), 1314–1318 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

C. Tuck, R. Hague, and C. Doyle, “Low cost optical fibre based Fabry–Perot strain sensor production,” Meas. Sci. Technol. 17(8), 2206–2212 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[CrossRef]

Opt. Eng. (1)

J.-H. Chen, X.-G. Huang, and Z.-J. Huang, “Simple thin-film fiber optic temperature sensor based on Fabry-Perot interference,” Opt. Eng. 49(4), 044402 (2010).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of a Fabry-Perot interferometer with (a) spherical and (b) spheroidal air cavities which are assumed to be at the end of a single mode fiber (SMF), in front of its core.

Fig. 2
Fig. 2

(a) Theoretical value of δrd as a function of d of a quasi-spherical cavity and (b) an oblate spheroidal cavity for different values of r. In all cases r > d.

Fig. 3
Fig. 3

Schematic diagram of the interrogation set-up. FOC stands for fiber optic circulator. The micrographs show the PCF cross section and two spheroidal cavities with different sizes.

Fig. 4
Fig. 4

(a) Reflection spectra at different strains observed in a FPI whose cavity had spheroidal shape and dimensions of 10x60μm. (b) The corresponding shift of the interference pattern as a function of strain is also shown (dots) as well as the shift vs strain observed in a FPI with cavity of 29x40μm (stars).

Fig. 5
Fig. 5

Shift of the interference pattern as a function of time when a hammer blow (a) and periodic vibration (b) was applied to a FPI whose cavity had a size of 10x60μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ V V = 1 K δ P + γ δ T .
δ V V E K ε a .
V = π d R 2 2 3 π r 2 d .
δ r δ d = 3 4 ( E K + 1 ) ( R 2 r 2 2 3 ) r d .

Metrics