Abstract

Silicon has recently attracted a great deal of interest as an economical platform for integrated photonics systems. Integrated photodetectors are a key component of such systems, and CMOS-compatible processes involving epitaxially grown germanium for photodetection have been demonstrated. Detector parasitic capacitance is a key limitation, which will likely worsen if techniques such as bump bonding are employed. Here we propose leveraging the complexity available in silicon photonics processes to compensate for this using a technique known as gain peaking. We predict that by simply including an inductor and capacitor in the photodetector circuit with the properly chosen values, detector bandwidths can be as much as doubled, with no undesired effects.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron 12(6), 1678–1687 (2006).
    [CrossRef]
  3. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [CrossRef]
  4. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
    [CrossRef]
  5. K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
    [CrossRef]
  6. M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
    [CrossRef]
  7. J. S. Orcutt and R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
    [CrossRef]
  8. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
    [CrossRef] [PubMed]
  9. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
    [CrossRef] [PubMed]
  10. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
    [CrossRef] [PubMed]
  11. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008).
    [CrossRef] [PubMed]
  12. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
    [CrossRef] [PubMed]
  13. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J.-F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
    [CrossRef] [PubMed]
  14. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [CrossRef]
  15. E. D. Palik,.Handbook of Optical Constants of Solids (Elsevier 1998) pp. 471–478.
  16. M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
    [CrossRef]
  17. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
    [CrossRef] [PubMed]
  18. M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
    [CrossRef]
  19. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [CrossRef] [PubMed]
  20. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
    [CrossRef]
  21. H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, T. Pinguet, A. Mekis, P. Dong, S. Liao, D. Feng, M. Asghari, R. Ho, K. Raj, J. G. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” IEEE Electronic Components and Technology Conference, 240–246 (2010).
  22. K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
    [CrossRef]
  23. Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
    [CrossRef]
  24. S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).
  25. S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).
  26. B. Razavi Microelectronics, (Prentice-Hall, 1998).
  27. W. S. C. Chang, RF Photonic Technology in Optical Links (Cambridge University Press, 2002).

2012 (1)

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

2011 (3)

2010 (4)

2009 (3)

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (6)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron 12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

2002 (1)

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

2000 (2)

S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Allstot, D. J.

S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).

Aoki, M.

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

Asghari, M.

Assefa, S.

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Bedell, S. W.

Berroth, M.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

Boyd, S. P.

S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).

Cassan, E.

Chen, L.

Chen, L.-L.

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

Chetrit, Y.

Cohen, R.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Crozat, P.

Cunningham, J. E.

Damlencourt, J.-F.

Davids, P. S.

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

del Mar Hershenson, M.

S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).

DeRose, C. T.

Doi, M.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Dong, P.

Dosunmu, O.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

El Melhaoui, L.

Fathpour, S.

Fédéli, J.-M.

Feng, D.

Feng, N.-N.

Fisher, M.

Fong, J.

Fukamachi, T.

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

Furuta, T.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Ginsburg, E.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

Harada, T.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Hashimoto, T.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Hayami, R.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Ishibashi, T.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Ito, H.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Jalali, B.

Jutzi, M.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

Kang, Y.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Kasper, E.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

Kawai, M.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Kitatani, T.

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

Kiyota, Y.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Kodama, S.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

Kondo, M.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Krishnamoorthy, A. V.

Kung, C.-C.

Laval, S.

Le Roux, X.

Lee, T. H.

S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).

Li, G.

Liang, H.

Liao, S.

Lin, C.-C.

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

Lipson, M.

Litski, S.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Liu, H. D.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Liu, Y.

Luo, Y.

Makino, S.

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

Mangeney, J.

Marris-Morini, D.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

Mohan, S. S.

S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).

Morse, M.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Morse, M. M.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

Oda, K.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Oehme, M.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

Ohue, E.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Orcutt, J. S.

J. S. Orcutt and R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[CrossRef]

Ou, W.-Y.

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

Paniccia, M. J.

Pascal, D.

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

Qian, W.

Ram, R. J.

J. S. Orcutt and R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[CrossRef]

Rice, P. M.

Rouvière, M.

Rubin, D.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

Sarid, G.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Shafiiha, R.

Shekhar, S.

S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).

Shimamoto, H.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Shinoda, K.

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

Shiota, T.

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron 12(6), 1678–1687 (2006).
[CrossRef]

Starbuck, A. L.

Sugiyama, M.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Tanabe, M.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Tanaka, K.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Topuria, T.

Trotter, D. C.

Vivien, L.

Vlasov, Y. A.

Walling, J. S.

S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).

Washio, K.

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

Watts, M. R.

Werner, J.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

Wu, J.-R.

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

Wu, M.-L.

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

Wu, Y.-H.

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

Xia, F.

Yin, T.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Zadka, M.

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Zhang, Y.

Zheng, D.

Zortman, W. A.

Appl. Phys. Lett. (1)

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge pin photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006).
[CrossRef]

Electron. Lett. (1)

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[CrossRef]

IEEE Electron Device Lett. (1)

Y.-H. Wu, W.-Y. Ou, C.-C. Lin, J.-R. Wu, M.-L. Wu, and L.-L. Chen, “MIM capacitors with crystalline-stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett. 33, 104–106 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Shinoda, S. Makino, T. Kitatani, T. Shiota, T. Fukamachi, and M. Aoki, “InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices,” IEEE J. Quantum Electron. 45(9), 1201–1209 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (2)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron 12(6), 1678–1687 (2006).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron 17(3), 597–608 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

IEEE J. Solid-St, Circulation (1)

S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-St, Circulation 41, 2424–2439 (2006).

IEEE J. Solid-State Circulation (1)

S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circulation 35, 346–355 (2000).

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. S. Orcutt and R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

K. Washio, E. Ohue, H. Shimamoto, K. Oda, R. Hayami, Y. Kiyota, M. Tanabe, M. Kondo, T. Hashimoto, and T. Harada, “A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron. Dev. 49(2), 271–278 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Opt. Express (8)

L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J.-F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
[CrossRef] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008).
[CrossRef] [PubMed]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
[CrossRef] [PubMed]

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
[CrossRef] [PubMed]

S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
[CrossRef] [PubMed]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[CrossRef] [PubMed]

Physica E (1)

M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009).
[CrossRef]

Other (4)

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, T. Pinguet, A. Mekis, P. Dong, S. Liao, D. Feng, M. Asghari, R. Ho, K. Raj, J. G. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” IEEE Electronic Components and Technology Conference, 240–246 (2010).

B. Razavi Microelectronics, (Prentice-Hall, 1998).

W. S. C. Chang, RF Photonic Technology in Optical Links (Cambridge University Press, 2002).

E. D. Palik,.Handbook of Optical Constants of Solids (Elsevier 1998) pp. 471–478.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Equivalent small-signal AC circuit for a photodetector and a simple resistive load. The parasitic capacitance and resistance of the detector is shown. The detector appears as a current source.

Fig. 2
Fig. 2

Typical silicon photonics cross-section formed by combining typical silicon waveguide geometries with two layers from a typical CMOS metal stack. Dimensions are hypothetical and do not refer to a realized process. The active layer of silicon is shown, as well two metal layers, typically formed of aluminum, and a metal-insulator-metal (MIM) capacitor layer. Typically a high-resistivity handle wafer on the order of 1000 Ω-cm or higher is used for RF performance.

Fig. 3
Fig. 3

Small-signal AC model of a series gain peaked photodetector circuit.

Fig. 4
Fig. 4

Normalized responsivity and phase shift as a function of frequency for the series-peaked photodetector, using the circuit values Cpd = 35.2 fF, Rpd = 130 Ω, Rl = 50Ω and Lpk = 0.57 nH. For comparison the un-peaked detector performance is shown (Lpk = 0).

Fig. 5
Fig. 5

Small-signal AC circuit for an enhanced series gain peaked photodetector circuit. The additional capacitor Cl is in parallel with the load resistance. This could be a load capacitance due to bump-bonding or another form of packaging, or it could be an intentionally added capacitance via a MIM capacitor layer.

Fig. 6
Fig. 6

Normal and enhanced series gain peaked photodetector circuit performance. Here Rpd = 5Ω, Cpd = 100fF, Rl = 50Ω, Cl = 77fF, Lpk = 160pH.

Fig. 7
Fig. 7

Shunt peaking photodetector small-signal AC circuit.

Fig. 8
Fig. 8

Normalized photocurrent for the shunt peaked photodetector circuit. For comparison, the unpeaked detector circuit performance is also shown.

Fig. 9
Fig. 9

Layout of example inductor with 290 pH inductance as viewed from above (a) and in isometric view (b). Only 75 x 75 um2 is required.

Tables (1)

Tables Icon

Table 1 Some Examples of Enhanced Gain Peaking Circuits, with the Enhanced Bandwidths Compared to the Original, Un-peaked Bandwidths

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

f c = 1 2 π C p d ( R l + R p d )
f c = 2 2 π ( R l + R p d ) C p d
L p k = C p d ( R l + R p d ) 2 2
| H ( ω ) | = ( ( C p d C l R l L p k ) 2 ω 6 + ( C p d L p k ( C p d L p k 2 C l R l 2 ( C p d + C l ) ) + ( C p d C l R l R p d ) 2 ) ω 4 + ( C p d 2 ( R l + R p d ) 2 + C l R l 2 ( 2 C p d + C l ) 2 C p d L p k ) ω 2 + 1 ) 1 2
f p e a k = 1 2 π R l L p k C p d ( R l + R p d )
G p e a k = L p k C p d R p d R l + L p k
Δ f 3 d B = 1 G p e a k 2 π C p d ( R l + R p d )
i ¯ i n , n 2 = 4 k T R s e r i e s ω 2 C p d 2
i ¯ i n , n 2 = 4 k T R p d ω 2 C p d 2
i ¯ i n , n 2 = 4 k T R s e r i e s 1 + ω 2 C p d 2 R p d 2 R s e r i e s 2 + ω 2 L 2
i ¯ i n , n 2 = 4 k T 1 + ω 2 C p d 2 R p d 2 R L
R s e r i e s R L ( R s e r i e s 2 + ω 2 L 2 )

Metrics