Abstract

The fabrication and characterization of a novel metamaterial that shows negative index in the visible (blue) is reported. The real part of the negative index of this metamaterial at 405 nm, comprising co-sputtered SiC + Ag nanoparticle mixture on a glass substrate, is deduced from results of double Michelson interferometry setup which shows a negative phase delay. It is numerically verified that this metamaterial can yield near-field super-resolution imaging for both TE and TM polarizations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Smith, “Fabrication techniques for surface-acoustic wave and thin-film optical devices,” Proc. IEEE 62(10), 1361–1387 (1974).
    [CrossRef]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  4. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  7. P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).
  8. N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
    [CrossRef]
  9. A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
    [CrossRef]
  10. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [CrossRef] [PubMed]
  11. B. C. Mohanty and S. Kasiviswanathan, “Two-prism setup for surface plasmon resonance studies,” Rev. Sci. Instrum. 76(3), 033103 (2005).
    [CrossRef]

2011 (1)

P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).

2009 (1)

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

2007 (1)

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
[CrossRef]

2006 (1)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

2005 (2)

B. C. Mohanty and S. Kasiviswanathan, “Two-prism setup for surface plasmon resonance studies,” Rev. Sci. Instrum. 76(3), 033103 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1994 (1)

1974 (1)

H. I. Smith, “Fabrication techniques for surface-acoustic wave and thin-film optical devices,” Proc. IEEE 62(10), 1361–1387 (1974).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

Akyurtlu, A.

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
[CrossRef]

Angkawisittpan, N.

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
[CrossRef]

Aylo, R.

P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).

Banerjee, P. P.

P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Hell, S. W.

Higginson, K.

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

Kasiviswanathan, S.

B. C. Mohanty and S. Kasiviswanathan, “Two-prism setup for surface plasmon resonance studies,” Rev. Sci. Instrum. 76(3), 033103 (2005).
[CrossRef]

Kussow, A.-G.

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Limberopoulos, N.

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Merritt, C. D.

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

Mohanty, B. C.

B. C. Mohanty and S. Kasiviswanathan, “Two-prism setup for surface plasmon resonance studies,” Rev. Sci. Instrum. 76(3), 033103 (2005).
[CrossRef]

Nehmetallah, G.

P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Rogers, S.

P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Semichaevsky, A.

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, H. I.

H. I. Smith, “Fabrication techniques for surface-acoustic wave and thin-film optical devices,” Proc. IEEE 62(10), 1361–1387 (1974).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Wichmann, J.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, and C. D. Merritt, “Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites,” Appl. Phys. Lett. 95(2), 023306 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisittpan, “MgB2-based negative refraction index metamaterial at visible frequencies: Theoretical analysis,” Phys. Rev. B 76(19), 195123 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

H. I. Smith, “Fabrication techniques for surface-acoustic wave and thin-film optical devices,” Proc. IEEE 62(10), 1361–1387 (1974).
[CrossRef]

Proc. SPIE (1)

P. P. Banerjee, G. Nehmetallah, R. Aylo, and S. Rogers, “Nanoparticle-Dispersed Metamaterial Sensors for Adaptive Coded Aperture Imaging (ACAI) applications,” Proc. SPIE 8165, 81651G (2011).

Rev. Sci. Instrum. (1)

B. C. Mohanty and S. Kasiviswanathan, “Two-prism setup for surface plasmon resonance studies,” Rev. Sci. Instrum. 76(3), 033103 (2005).
[CrossRef]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Typical SiC + Ag sample on glass using co-sputtering, showing excellent surface smoothness. Thickness of sample shown in picture is t = 51.2 nm; (b) SEM image for a (x350k) magnification for a 100nm thick sample.

Fig. 2
Fig. 2

Schematic diagram for the setup of double Michelson interferometer.

Fig. 3
Fig. 3

(a) Typical interferograms when both arms of the interferometer have glass slides only; (b) a blow up of (a) showing the phasefronts; (c) interferograms in the case when there is a SiC + Ag sample of thickness 50nm. The SiC + Ag sample is inserted in the path of one of the beams in one arm of the double interferometer. The taller envelope is the interferogram between glass slides, while the shorter envelope (superposed) is in the presence of the SiC + Ag sample due to attenuation in the sample; (d) a blow up of (c) showing the phasefronts. The double sided arrow in (d) indicates the amount of time delay due to SiC + Ag sample.

Fig. 4
Fig. 4

(a) Prototype for near-field imaging structure with a periodic sub-wavelength object, (b) COMSOL simulation of the electric field.

Fig. 5
Fig. 5

Comparison between (a) Ag @ 365 nm and (b) our NIM (SiC + Ag) @ 405 nm for TE case. For the grating pattern shown with period 160 nm and duty cycle 50%, optical fields should be higher behind the regions where there is no Cr (shaded; yellow, in color). For Ag, the grating is incorrectly imaged, whereas with SiC + Ag, good super-resolution is observed. Parameters used for simulation are for (a) εCr = −3.72 + 9.9i, εspacer = 2.415, εAg = −2.4 + 0.24i, ntop PR = 1.65; for (b) εCr = −4.15 + 11i; εspacer = 2.8, nSiC + Ag = −1.06 + 0.47i, ntop PR = 1.65. The parameters used for (a) are optimized for best super-resolution results for TM case @ 365 nm. The fields are monitored at distances (a) 120 nm (b) 90 nm from the top of the Cr.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t p h a s e = 2 d / v p h a s e 2 d / c = > v p h a s e = 2 d / [ Δ t p h a s e + 2 d / c ] , Re ( n ) = c / v p h a s e ,

Metrics