Abstract

A multiwavelength erbium-doped fiber (EDF) laser based on a nonlinear amplifying loop mirror (NALM) is proposed and experimentally demonstrated. The NALM provides intensity-dependent transmissivity to equalize different-wavelength powers and the transmission can be uniquely optimized by controlling the cavity loss associated with a section of un-pumped EDF, which also enhances the output signal-to-noise ratio (SNR). Through adjusting the polarization controllers (PCs), under only 70mW pump power, up to 62-wavelength output with channel spacing of 0.45 nm has been achieved. Also, the lasing tunability and stability are verified.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
    [CrossRef]
  2. D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15(3), 930–935 (2007).
    [CrossRef] [PubMed]
  3. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, “160-line multiwavelength generation of linear-cavity self-seeded Brillouin-erbium fiber laser,” Opt. Express 14(22), 10233–10238 (2006).
    [CrossRef] [PubMed]
  4. Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium,” Opt. Express 17(3), 1234–1239 (2009).
    [CrossRef] [PubMed]
  5. K. J. Zhou, D. Y. Zhou, F. Z. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28(11), 893–895 (2003).
    [CrossRef] [PubMed]
  6. A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
    [CrossRef]
  7. Z. X. Zhang, L. Zhan, K. Xu, J. Wu, Y. X. Xia, and J. T. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33(4), 324–326 (2008).
    [CrossRef] [PubMed]
  8. X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
    [CrossRef] [PubMed]
  9. X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
    [CrossRef]
  10. N. Finlayson, B. K. Nayar, and N. J. Doran, “Switch inversion and polarization sensitivity of the nonlinear-optical loop mirror,” Opt. Lett. 17(2), 112–114 (1992).
    [CrossRef] [PubMed]
  11. A. J. Stentz and R. W. Boyd, “Polarization effects and nonlinear switching in fiber figure-eight lasers,” Opt. Lett. 19(18), 1462–1464 (1994).
    [CrossRef] [PubMed]
  12. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
    [CrossRef]
  13. M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
    [CrossRef]

2009 (1)

2008 (1)

2007 (2)

D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15(3), 930–935 (2007).
[CrossRef] [PubMed]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

2006 (3)

2005 (1)

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[CrossRef]

2003 (1)

2001 (1)

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[CrossRef]

1996 (1)

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

1994 (1)

1992 (1)

Ahmad, H.

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[CrossRef]

Boyd, R. W.

Chen, D.

Chen, Z.

Cvecek, K.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

Demokan, M. S.

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[CrossRef]

Dong, F. Z.

Doran, N. J.

Dutta, N. K.

Feng, X. H.

X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[CrossRef] [PubMed]

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[CrossRef]

Finlayson, N.

He, S.

Ji, J. H.

Leuchs, G.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

Lin, J. T.

Liu, H. L.

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[CrossRef]

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[CrossRef]

Luo, S. Y.

Ma, S.

Mahdi, M. A.

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[CrossRef]

Nayar, B. K.

Ngo, N. Q.

Onishchukov, G.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

Qin, S.

Schmauss, B.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

Sponsel, K.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

Stentz, A. J.

Stephan, C.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

Tam, H. Y.

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[CrossRef]

X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[CrossRef] [PubMed]

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[CrossRef]

Wai, P. K. A.

X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[CrossRef] [PubMed]

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[CrossRef]

Wu, J.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

Xia, J.

Xia, Y. X.

Xu, K.

Zhan, L.

Zhang, A. L.

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[CrossRef]

Zhang, Z. X.

Zhou, D. Y.

Zhou, K. J.

IEEE Photon. Technol. Lett. (4)

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[CrossRef]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[CrossRef]

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[CrossRef]

Opt. Commun. (1)

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the multiwavelength EDFL based on the NALM assisted by a section of un-pumped EDF.

Fig. 2
Fig. 2

Modifying the intensity-dependent transmissivity of the NALM: (a) Adjusting PC1 to switch the working state; (b) tuning the G factor to vary the transmissivity curve slope.

Fig. 3
Fig. 3

Typical output spectra of the multiwavelength EDFL without un-pumped EDF under pump power of 60 mW.

Fig. 4
Fig. 4

Two output spectra of the MWFL based on NALM in cooperation with a section of un-pumped EDF section under 70mW pump power: (a) 62 wavelengths within 6dB bandwidth; (b) 51 wavelengths within 3dB bandwidth.

Fig. 5
Fig. 5

The wavelength tunability of the MWFL operation with 52 wavelengths.

Fig. 6
Fig. 6

The local enlargement result of repeated scanning (every 5 min) of 52-wavelength output.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = P T / P i n = G ( 1 0.5 { 1 + cos [ 0.5 ( 1 G ) 2 π n 2 P i n L / λ A e f f + ϕ d ] } )

Metrics