Abstract

A multiwavelength erbium-doped fiber (EDF) laser based on a nonlinear amplifying loop mirror (NALM) is proposed and experimentally demonstrated. The NALM provides intensity-dependent transmissivity to equalize different-wavelength powers and the transmission can be uniquely optimized by controlling the cavity loss associated with a section of un-pumped EDF, which also enhances the output signal-to-noise ratio (SNR). Through adjusting the polarization controllers (PCs), under only 70mW pump power, up to 62-wavelength output with channel spacing of 0.45 nm has been achieved. Also, the lasing tunability and stability are verified.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation

Xinhuan Feng, Hwa-yaw Tam, and P. K. A. Wai
Opt. Express 14(18) 8205-8210 (2006)

Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror

Jiajun Tian, Yong Yao, Yunxu Sun, Xuelian Yu, and Deying Chen
Opt. Express 17(17) 15160-15166 (2009)

Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter

Zuxing Zhang, Li Zhan, Kun Xu, Jian Wu, Yuxing Xia, and Jintong Lin
Opt. Lett. 33(4) 324-326 (2008)

References

  • View by:
  • |
  • |
  • |

  1. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
    [Crossref]
  2. D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15(3), 930–935 (2007).
    [Crossref] [PubMed]
  3. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, “160-line multiwavelength generation of linear-cavity self-seeded Brillouin-erbium fiber laser,” Opt. Express 14(22), 10233–10238 (2006).
    [Crossref] [PubMed]
  4. Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium,” Opt. Express 17(3), 1234–1239 (2009).
    [Crossref] [PubMed]
  5. K. J. Zhou, D. Y. Zhou, F. Z. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28(11), 893–895 (2003).
    [Crossref] [PubMed]
  6. A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
    [Crossref]
  7. Z. X. Zhang, L. Zhan, K. Xu, J. Wu, Y. X. Xia, and J. T. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33(4), 324–326 (2008).
    [Crossref] [PubMed]
  8. X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
    [Crossref] [PubMed]
  9. X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
    [Crossref]
  10. N. Finlayson, B. K. Nayar, and N. J. Doran, “Switch inversion and polarization sensitivity of the nonlinear-optical loop mirror,” Opt. Lett. 17(2), 112–114 (1992).
    [Crossref] [PubMed]
  11. A. J. Stentz and R. W. Boyd, “Polarization effects and nonlinear switching in fiber figure-eight lasers,” Opt. Lett. 19(18), 1462–1464 (1994).
    [Crossref] [PubMed]
  12. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
    [Crossref]
  13. M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
    [Crossref]

2009 (1)

2008 (1)

2007 (2)

D. Chen, S. Qin, and S. He, “Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains,” Opt. Express 15(3), 930–935 (2007).
[Crossref] [PubMed]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

2006 (3)

2005 (1)

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[Crossref]

2003 (1)

2001 (1)

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[Crossref]

1996 (1)

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

1994 (1)

1992 (1)

Ahmad, H.

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[Crossref]

Boyd, R. W.

Chen, D.

Chen, Z.

Cvecek, K.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Demokan, M. S.

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[Crossref]

Dong, F. Z.

Doran, N. J.

Dutta, N. K.

Feng, X. H.

X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[Crossref] [PubMed]

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Finlayson, N.

He, S.

Ji, J. H.

Leuchs, G.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Lin, J. T.

Liu, H. L.

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[Crossref]

Luo, S. Y.

Ma, S.

Mahdi, M. A.

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[Crossref]

Nayar, B. K.

Ngo, N. Q.

Onishchukov, G.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Qin, S.

Schmauss, B.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Sponsel, K.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Stentz, A. J.

Stephan, C.

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

Tam, H. Y.

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[Crossref] [PubMed]

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[Crossref]

Wai, P. K. A.

X. H. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[Crossref] [PubMed]

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Wu, J.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Xia, J.

Xia, Y. X.

Xu, K.

Zhan, L.

Zhang, A. L.

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[Crossref]

Zhang, Z. X.

Zhou, D. Y.

Zhou, K. J.

IEEE Photon. Technol. Lett. (4)

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

A. L. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(12), 2535–2537 (2005).
[Crossref]

K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifying loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19(22), 1858–1860 (2007).
[Crossref]

M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er3+-doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett. 13(10), 1067–1069 (2001).
[Crossref]

Opt. Commun. (1)

X. H. Feng, H. Y. Tam, H. L. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the multiwavelength EDFL based on the NALM assisted by a section of un-pumped EDF.

Fig. 2
Fig. 2

Modifying the intensity-dependent transmissivity of the NALM: (a) Adjusting PC1 to switch the working state; (b) tuning the G factor to vary the transmissivity curve slope.

Fig. 3
Fig. 3

Typical output spectra of the multiwavelength EDFL without un-pumped EDF under pump power of 60 mW.

Fig. 4
Fig. 4

Two output spectra of the MWFL based on NALM in cooperation with a section of un-pumped EDF section under 70mW pump power: (a) 62 wavelengths within 6dB bandwidth; (b) 51 wavelengths within 3dB bandwidth.

Fig. 5
Fig. 5

The wavelength tunability of the MWFL operation with 52 wavelengths.

Fig. 6
Fig. 6

The local enlargement result of repeated scanning (every 5 min) of 52-wavelength output.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = P T / P i n = G ( 1 0.5 { 1 + cos [ 0.5 ( 1 G ) 2 π n 2 P i n L / λ A e f f + ϕ d ] } )

Metrics