Abstract

We report the extension of broadband degenerate OPO operation further into mid-infrared. A femtosecond thulium fiber laser with output centered at 2050 nm synchronously pumps a 500-μm-long crystal of orientation patterned GaAs providing broadband gain centered at 4.1 µm. We observe a pump threshold of 17 mW and output bandwidth extending from 2.6 to 6.1 µm at the −30 dB level. Average output power was 37 mW. Appropriate resonator group dispersion is a key factor for achieving degenerate operation with instantaneously broad bandwidth. The output spectrum is very sensitive to absorption and dispersion introduced by molecular species inside the OPO cavity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
    [CrossRef]
  2. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
    [CrossRef]
  3. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).
  4. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).
    [CrossRef] [PubMed]
  5. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [CrossRef] [PubMed]
  6. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [CrossRef] [PubMed]
  7. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
    [CrossRef] [PubMed]
  8. C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, “Coherence properties of a doubly-resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7(5), 815–820 (1990).
    [CrossRef]
  9. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
    [CrossRef] [PubMed]
  10. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
    [CrossRef]
  11. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [CrossRef] [PubMed]
  12. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [CrossRef] [PubMed]
  13. J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” CThBB5 CLEO 2011, Baltimore, Maryland, USA.
  14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [CrossRef] [PubMed]
  15. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [CrossRef] [PubMed]
  16. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
    [CrossRef]
  17. The HITRAN Database, http://www.cfa.harvard.edu/HITRAN/
  18. V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81(3), 033840 (2010).
    [CrossRef] [PubMed]
  19. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
    [CrossRef] [PubMed]
  20. J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, and I. Hartl, “Fully stabilized, self-referenced thulium fiber frequency comb,” CLEO Europe 2011, p. PDB-1.
  21. J. Bethge, J. Jiang, C. Mohr, M. E. Fermann, and I. Hartl, “Optically referenced Tm-fiber-laser frequency comb,” ASSP 2012, p. AT5A.3.

2011 (3)

2010 (3)

S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
[CrossRef]

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81(3), 033840 (2010).
[CrossRef] [PubMed]

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

2009 (1)

2008 (3)

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

2004 (1)

1999 (1)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

1990 (1)

1986 (2)

Adler, F.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[CrossRef] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[CrossRef] [PubMed]

Arpin, P.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

Balslev-Clausen, D.

Ban, T.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[CrossRef] [PubMed]

Byer, R. L.

Chen, M.-C.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

Colby, E.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

Cossel, K. C.

Day, T.

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Digonnet, M.

Ebert, C. B.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

England, R. J.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Eyres, L. A.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Fejer, M. M.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Fermann, M. E.

Foltynowicz, A.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[CrossRef] [PubMed]

Gohle, C.

Gordon, J. P.

Harris, J. S.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

Hartl, I.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

Ischebeck, R.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Kalashnikov, V. L.

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81(3), 033840 (2010).
[CrossRef] [PubMed]

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

Keilmann, F.

Kirchner, M. S.

Krausz, F.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

Leindecker, N.

Marandi, A.

Maslowski, P.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[CrossRef] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

McGuinness, C.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Mitschke, F. M.

Mollenauer, L. F.

Murnane, M. M.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

Nabors, C. D.

Nelson, J.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Noble, R.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Plettner, T.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[CrossRef] [PubMed]

Popmintchev, T.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

Schunemann, P. G.

Sears, C. M. S.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Siemann, R. H.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Sorokin, E.

Sorokina, I. T.

Spencer, J.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Thorpe, M. J.

Urbanek, K.

Vodopyanov, K. L.

Walz, D.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Wong, S. T.

Yang, S. T.

Ye, J.

J. Cryst. Growth (1)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010).
[CrossRef]

Nat. Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. A (1)

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81(3), 033840 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011).
[CrossRef] [PubMed]

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Other (4)

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” CThBB5 CLEO 2011, Baltimore, Maryland, USA.

J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, and I. Hartl, “Fully stabilized, self-referenced thulium fiber frequency comb,” CLEO Europe 2011, p. PDB-1.

J. Bethge, J. Jiang, C. Mohr, M. E. Fermann, and I. Hartl, “Optically referenced Tm-fiber-laser frequency comb,” ASSP 2012, p. AT5A.3.

The HITRAN Database, http://www.cfa.harvard.edu/HITRAN/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the ring-cavity OPO setup. M1 is a dielectric mirror for in-coupling the pump, M2 and M3 are concave and M4-M6 is flat gold-coated mirrors, PZT - piezo actuator stage. A thin YAG plate provides partial second-order GVD compensation. The photodetector PD consists of a photoconductive PbSe element behind a long pass (> 2.5 µm) filter.

Fig. 2
Fig. 2

OPO output intensity as a function of roundtrip cavity length consists of a number of discrete oscillation peaks separated by approximately the pump center wavelength. The small interleaved peaks and those extending to shorter length detunings are associated with the secondary set of longitudinal modes due to extra dispersion caused by intracavity carbon dioxide.

Fig. 3
Fig. 3

2D color intensity plots of the output spectra as the resonator length is detuned. In (a), the OPO runs un-purged with the dispersion of the 0.5-mm GaAs crystal un-compensated. In (b), 80-um YAG is added to partially compensate GaAs dispersion. In (c), the OPO is purged with dry nitrogen but has no YAG compensation. In (d), 80-µm YAG is added to the purged OPO.

Fig. 4
Fig. 4

Representative OPO output spectra with YAG plate used for dispersion compensation. (a) Degenerate (gray) and non-degenerate (black) output. In the former case, the 'gap-less' degenerate operation was achieved over a narrower overall bandwidth at an intermediate stage in the purge process, while the non-degenerate spectrum was recorded prior to purging. (b) The broadest output spectrum that was achieved without purging. (c) The broadest spectrum achieved with the resonator purged. The dips in the spectra around 4.25 μm are all due to absorption of atmospheric carbon dioxide; transmission through 2 m of atmosphere is shown on top.

Fig. 5
Fig. 5

Modulation of the OPO spectrum near λ = 5 μm associated with intracavity water vapor absorption (left) and near 4.4 μm due to isotopic carbon dioxide (13CO2) (right) in an un-purged cavity measured with a FTIR spectrometer. Percent transmission through 4 m of standard atmosphere (from HITRAN database) is shown in magenta.

Fig. 6
Fig. 6

(a) Reflectivity curve of the dielectric mirror (red curve) and relative parametric gain of the 0.5-mm OP-GaAs (black curve) vs. wavelength. (b) Cumulative group delay introduced by 0.5-mm GaAs plus 80-μm YAG plus dielectric mirror (solid curve) and group delay without YAG plate (dashed curve).

Metrics