Abstract

A control algorithm is presented that addresses the stability issues inherent to the operation of monolithic mode-locked laser diodes. It enables a continuous pulse duration tuning without any onset of Q-switching instabilities. A demonstration of the algorithm performance is presented for two radically different laser diode geometries and continuous pulse duration tuning between 0.5 ps to 2.2 ps and 1.2 ps to 10.2 ps is achieved. With practical applications in mind, this algorithm also facilitates control over performance parameters such as output power and wavelength during pulse duration tuning. The developed algorithm enables the user to harness the operational flexibility from such a laser with ‘push-button’ simplicity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
    [CrossRef]
  2. P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical clock distribution using a mode-locked semiconductor-laser diode system,” J. Lightwave Technol. 9(12), 1646–1649 (1991).
    [CrossRef]
  3. A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
    [CrossRef]
  4. H. Takara, “High-speed optical time-division-multiplexed signal generation,” Opt. Quantum Electron. 33(7/10), 795–810 (2001).
    [CrossRef]
  5. D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23(4), 663–670 (2006).
    [CrossRef]
  6. B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
    [CrossRef]
  7. G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
    [CrossRef]
  8. M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
    [CrossRef]
  9. S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
    [CrossRef]
  10. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
    [CrossRef]
  11. A. R. Rae, M. G. Thompson, R. V. Penty, and I. H. White, “Dynamic simulation of mode-locked quantum-dot lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThF1.
  12. M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
    [CrossRef]
  13. C. Rulliere, in Femtosecond Laser Pulses Principles and Experiment, (Springer, 1998).
  14. E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).
  15. D. Von der Linde, “Characterization of the noise in continuously operating mode locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  16. U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
    [CrossRef]
  17. J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,” Opt. Express 18(7), 7554–7568 (2010).
    [CrossRef] [PubMed]

2010 (2)

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,” Opt. Express 18(7), 7554–7568 (2010).
[CrossRef] [PubMed]

2009 (2)

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

2007 (1)

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

2006 (4)

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23(4), 663–670 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

2004 (2)

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

2001 (2)

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

H. Takara, “High-speed optical time-division-multiplexed signal generation,” Opt. Quantum Electron. 33(7/10), 795–810 (2001).
[CrossRef]

1991 (1)

P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical clock distribution using a mode-locked semiconductor-laser diode system,” J. Lightwave Technol. 9(12), 1646–1649 (1991).
[CrossRef]

1986 (1)

D. Von der Linde, “Characterization of the noise in continuously operating mode locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Abdolvand, A.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

Ahmad, S. Z.

P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical clock distribution using a mode-locked semiconductor-laser diode system,” J. Lightwave Technol. 9(12), 1646–1649 (1991).
[CrossRef]

Arsenijevic, D.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

Bandelow, U.

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23(4), 663–670 (2006).
[CrossRef]

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Bimberg, D.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Delfyett, P. J.

P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical clock distribution using a mode-locked semiconductor-laser diode system,” J. Lightwave Technol. 9(12), 1646–1649 (1991).
[CrossRef]

Dholakia, K.

Ermold, M.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Fidorra, S.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Fiol, G.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Funk, E. E.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Furuta, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Hartman, D. H.

P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical clock distribution using a mode-locked semiconductor-laser diode system,” J. Lightwave Technol. 9(12), 1646–1649 (1991).
[CrossRef]

Heidrich, H.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Herczfeld, P. R.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Huttl, B.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Hüttl, B.

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23(4), 663–670 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

Iga, R.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Ito, H.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Ito, I.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Jemison, W. D.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Kaiser, R.

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23(4), 663–670 (2006).
[CrossRef]

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Kindel, Ch.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Kondo, Y.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Kovsh, A. R.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Krestnikov, I. L.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Kuntz, M.

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Lee, W. M.

Livshits, D. A.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Mandel, P.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Marinelli, C.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Mazilu, M.

Mikhrin, S. S.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Mo Xia, R. V.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

Ohno, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Penty, R. V.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Rachinskii, D.

Radziunas, M.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

Rae, A.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Rae, A. R.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

Rafailov, E. U.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

Rehbein, W.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Rosen, A.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Sahin, G.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Sato, K.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Sellin, R. L.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

Shane, J. C.

Stolpe, H.

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Takara, H.

H. Takara, “High-speed optical time-division-multiplexed signal generation,” Opt. Quantum Electron. 33(7/10), 795–810 (2001).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Vieira, A. J. C.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Viktorov, E. A.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Vladimirov, A.

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23(4), 663–670 (2006).
[CrossRef]

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

Vladimirov, A. G.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Von der Linde, D.

D. Von der Linde, “Characterization of the noise in continuously operating mode locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

White, I. H.

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Wilcox, K. G.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Williams, K. J.

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

Wolfrum, M.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Yoshino, K.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

Zolotovskaya, S. A.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

Appl. Phys. B (1)

D. Von der Linde, “Characterization of the noise in continuously operating mode locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Appl. Phys. Lett. (4)

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88(13), 133119 (2006).
[CrossRef]

B. Huttl, R. Kaiser, Ch. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. Vladimirov, and H. Heidrich, “Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers,” Appl. Phys. Lett. 88(22), 221104 (2006).
[CrossRef]

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96(1), 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett. 91(23), 231116 (2007).

Electron. Lett. (1)

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. G. Thompson, A. R. Rae, R. V. Mo Xia, R. V. Penty, and I. H. White, “Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively mode-locked Cr:forsterite laser,” IEEE Photon. Technol. Lett. 21(16), 1124–1126 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microw. Theory Tech. 49(10), 1882–1887 (2001).
[CrossRef]

J. Lightwave Technol. (1)

P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical clock distribution using a mode-locked semiconductor-laser diode system,” J. Lightwave Technol. 9(12), 1646–1649 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (2)

H. Takara, “High-speed optical time-division-multiplexed signal generation,” Opt. Quantum Electron. 33(7/10), 795–810 (2001).
[CrossRef]

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006).
[CrossRef]

Other (2)

C. Rulliere, in Femtosecond Laser Pulses Principles and Experiment, (Springer, 1998).

A. R. Rae, M. G. Thompson, R. V. Penty, and I. H. White, “Dynamic simulation of mode-locked quantum-dot lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThF1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup: Mode-locked laser diode with (a) straight-waveguide and (b) tapered- waveguide. The diodes were operated via a laser diode driver (IGain) to bias the gain section and a voltage supply (VAbs) to bias the absorber section of the diode. A lensed fiber picked up the emitted light field from the diode front facet. A combination of three fiber splitters (S1, S2, S3) delivered the light to an autocorrelator (AC) and a radio frequency spectrum analyzer (RFSA), an optical spectrum analyzer (OSA) and a power meter (PM). A personal computer (PC1) was used to control the setup via the GPIB bus. The computer (PC1) also served as a web server for remote access of the GUI via the internet over 500 km (over 300 miles) between Cambridge, England and St Andrews, Scotland (PC2).

Fig. 2
Fig. 2

The LABVIEW graphical user interface: (a) Pulse duration set to 1.5 ps. (1) Selection switch for function to be fitted (Sech2/Gaussian) (2) Pulse duration selection switch. (3) Pulse parameters: Output power [mW]; central wavelength [nm]; repetition rate [GHz]; spectral width [nm]; pulse duration [ps]; time-bandwidth product. (4) Selection switches for emission (on/off) and CW/mode-locked operation. (5) Program exit. (6) Optical spectrum with fitted function. (7) Temporal autocorrelation. (8) RFSA trace with zoom window. (9) Experiment observation camera window. (b) Pulse duration set to 9.6 ps.

Fig. 3
Fig. 3

(a) Three typical RFSA traces for a tapered-waveguide laser are shown from 0 to 22 GHz. Blue and red: unstable or incomplete mode-locked operation of the diode. Black: complete mode-locked operation. The windows for the first and second stability criteria are shown as grey boxes. (b) RFSA traces for first stability criterion, red is the same trace as in (a) for a frequency window from 1 to 9 GHz. The black trace indicates the RFSA floor for good mode locking at −45 dBm. (c) RFSA traces for the second stability criterion, blue is an analogous trace as in a) at a lower resolution bandwidth in a window between 0 to 0.5 GHz. The black trace indicates the RFSA floor for good mode locking at −50 dBm.

Fig. 4
Fig. 4

(a) PRFSA as a function of the pulse duration while tuning the tapered-waveguide laser from 0.52 ps to 2.19 ps. During pulse duration tuning it can be observed that the actual value (PRFSA) for complete mode locking is around −600 to −250 and well in the stable regime. (b) PRFSA as a function of the pulse duration while tuning the straight-waveguide MLLD from 1.17 ps to 10.19 ps. It can be seen that for the longer pulse durations (<5ps) the value for PRFSA gets close to the threshold cut off (−1000). This indicates that in this operational regime the mode locking starts to become more likely to exhibit instabilities than for shorter pulse durations. In both graphs intermediate steps were linearly interpolated from the measurement grid and verified in the reproducibility test.

Fig. 5
Fig. 5

Flowchart of the modified nearest-neighbor search algorithm. The algorithm creates a pulse duration look-up table τ(k) associated with the diode driving parameters (IGain(k); VAbs(k)) to facilitate continuous pulse duration tuning between τmax to τmin with a user defined resolution.

Fig. 6
Fig. 6

(a) Tapered mode-locked laser diode look-up table components, shown in red within the stable operation regime for the driving parameters (VAbs and IGain). For this diode the pulse duration could be varied from 2.19 ps down to 0.52 ps with each point marked as τmax and τmin respectively in the plot. (b) Top/down view of the stable operation regime.

Fig. 7
Fig. 7

(a) Road map for a straight-waveguide, mode-locked laser diode, shown in red within the stable operation regime for the driving parameters (VAbs and IGain). For this diode the pulse duration could be varied from 10.19 ps down to 1.17 ps where both points are marked as τmax and τmin respectively in the plot. (b) Top/down view of the stable operation regime.

Fig. 8
Fig. 8

Reproducibility test between 1.17 ps to 10.19 ps with set step sizes of 0.5 ps, by scanning through the calculated driving parameters and measuring the actual pulse duration over three scans (red, blue green), for the straight-waveguide MLLD.

Fig. 9
Fig. 9

Output characteristics of the straight-waveguide MLLD: (a) Average output power as a function of the drive current and reverse bias. Overlaid in red are the diode driving parameters (IGain(k); VAbs(k)) from the look-up table. (b) Laser diode average output power while the pulse duration is tuned from 1.17 ps to 10.19 ps. (c) Pulse repetition rate as a function of drive current and reverse bias. Overlaid in grey are the driving parameters from the look-up table. (d) Repetition rate during pulse duration tuning. (e) Spectral width (FWHM) of the emitted pulses as a function of the driving conditions. Overlaid in grey are the driving parameters from the look-up table. (f) FWHM during pulse duration tuning. (g) Center emission wavelength of the laser diode as a function of the driving conditions. Overlaid in red are the driving parameters from the look-up table. (h) Emission wavelength as a function of the set pulse duration. The measurement grid values for intermediate steps were again linearly interpolated as verified by the reproducibility test in Fig. 8.

Fig. 10
Fig. 10

Flowchart of the constrained nearest-neighbor search algorithm. The algorithm creates a pulse duration look-up table τ(k) associated with the diode driving parameters (IGain(k); VAbs(k)) to facilitate continuous pulse duration tuning between τmax to τmin while keeping an desired laser diode output parameter nearest to a target value. [The additional output constraint criterion is marked in red.]

Fig. 11
Fig. 11

(a) Black line: road map for a straight-waveguide, mode-locked laser diode, when an 5.2 mW output power constraint is used. The false color plot shows the average output power within the stable operation regime for the driving parameters (VAbs and IGain). Additionally the unconstrained road map is plotted as a red line. (b) Variation of the output power as a function of the pulse duration set points (1.17 ps to 10.19 ps) for the constrained algorithm (black line) and unconstrained algorithm (red line). (c) Black line: road map for a straight-waveguide MLLD, when an 1280 nm output wavelength constraint is used. The false color plot shows the emission wavelength within the stable operation regime for different driving parameters. Additionally the unconstrained road map is plotted as a red line. (d) Variation of the emission wavelength as a function of the pulse duration set points (1.17 ps to 10.19 ps) for the constrained algorithm (black line) and unconstrained algorithm (red line). The measurement grid values for intermediate steps were linearly interpolated and are verified through the reproducibility test in Fig. 8.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P R F S A = n = 1 N ( P ( n ) + P o f f s e t ) 4 [ a . u . ]

Metrics