Abstract

A photoelectric switch with fast response to visible light (<200μs), suitable photosensitivity and excellent repeatability is proposed based on the ultralong single crystalline V2O5 nanobelt, which are synthesized by chemical vapor deposition and its photoconductive mechanism can well be explained by small polaron hopping theory. Our results reveal that the switch has a great potential in next generation photodetectors and light-wave communications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
    [CrossRef]
  2. E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
    [CrossRef]
  3. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
    [CrossRef]
  4. L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
    [CrossRef]
  5. T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
    [CrossRef]
  6. B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
    [CrossRef]
  7. N. V. Joshi, Photoconductivity: Art, Science, and Technology (Marcel Dekker, 1990), Chap. 1.
  8. L. C. Hsu, Y. P. Kuo, and Y. Y. Li, “On-chip fabrication of an individual α-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching,” Appl. Phys. Lett. 94(13), 133108 (2009).
    [CrossRef]
  9. L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
    [CrossRef]
  10. Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
    [CrossRef]
  11. X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
    [CrossRef]
  12. J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
    [CrossRef]
  13. J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
    [CrossRef]
  14. T. M. Searle and B. Bowler, “Optical study of the excited state of the V′ centre in MgO,” J. Phys. Chem. Solids 32(3), 591–602 (1971).
    [CrossRef]
  15. N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C Solid State Phys. 10(17), 3391–3398 (1977).
    [CrossRef]
  16. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
    [CrossRef]

2011

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

2010

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

2009

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

L. C. Hsu, Y. P. Kuo, and Y. Y. Li, “On-chip fabrication of an individual α-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching,” Appl. Phys. Lett. 94(13), 133108 (2009).
[CrossRef]

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

2008

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
[CrossRef]

2007

Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
[CrossRef]

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

2006

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[CrossRef]

2000

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

1977

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C Solid State Phys. 10(17), 3391–3398 (1977).
[CrossRef]

1971

T. M. Searle and B. Bowler, “Optical study of the excited state of the V′ centre in MgO,” J. Phys. Chem. Solids 32(3), 591–602 (1971).
[CrossRef]

Bando, Y.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Baratto, G.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Bowler, B.

T. M. Searle and B. Bowler, “Optical study of the excited state of the V′ centre in MgO,” J. Phys. Chem. Solids 32(3), 591–602 (1971).
[CrossRef]

Burghard, M.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Buse, K.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Cao, M. S.

Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
[CrossRef]

Chen, Y. J.

Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
[CrossRef]

Comini, E.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Faglia, G.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Fan, X.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Fang, X.

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Fang, X. S.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Ferroni, M.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Golberg, D.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Guo, T. L.

X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
[CrossRef]

Han, C. H.

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

Herth, P.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Hsu, L. C.

L. C. Hsu, Y. P. Kuo, and Y. Y. Li, “On-chip fabrication of an individual α-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching,” Appl. Phys. Lett. 94(13), 133108 (2009).
[CrossRef]

Imlau, M.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Jiang, Y.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Jie, J. S.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Kim, G. T.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Koide, Y.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Krstic, V.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Kuo, Y. P.

L. C. Hsu, Y. P. Kuo, and Y. Y. Li, “On-chip fabrication of an individual α-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching,” Appl. Phys. Lett. 94(13), 133108 (2009).
[CrossRef]

Law, J. B. K.

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[CrossRef]

Lee, S. T.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Li, H. Q.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Li, L.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Li, Y. Y.

L. C. Hsu, Y. P. Kuo, and Y. Y. Li, “On-chip fabrication of an individual α-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching,” Appl. Phys. Lett. 94(13), 133108 (2009).
[CrossRef]

Liao, L.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Liao, M.

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Liao, M. Y.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Lin, Z. X.

X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
[CrossRef]

Liu, H. M.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Luo, Y. Z.

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

Ma, J.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Mai, L. Q.

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

Meng, X. M.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Mott, N. F.

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C Solid State Phys. 10(17), 3391–3398 (1977).
[CrossRef]

Muster, J.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Pang, S.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Park, J. G.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Park, Y. W.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Peng, L.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Roth, S.

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Sberveglieri, G.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Searle, T. M.

T. M. Searle and B. Bowler, “Optical study of the excited state of the V′ centre in MgO,” J. Phys. Chem. Solids 32(3), 591–602 (1971).
[CrossRef]

Shen, Z. X.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Stoneham, A. M.

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C Solid State Phys. 10(17), 3391–3398 (1977).
[CrossRef]

Thong, J. T. L.

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[CrossRef]

Tong, L. M.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Vomiero, A.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Wang, D. J.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Wang, P.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Wang, T. H.

X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
[CrossRef]

Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
[CrossRef]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Woike, Th.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Xie, T. F.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Xu, L.

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

Xu, X.

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Xu, X. J.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Xue, X. Y.

X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
[CrossRef]

Yan, B.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Yoshio, B.

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

You, Y. M.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Yu, T.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Zeng, H.

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Zhai, J. L.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Zhai, T.

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Zhai, T. Y.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Zhang, W. J.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Zhang, Y.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

Zheng, Z.

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

Zhou, H. S.

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

Zhu, C. L.

Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
[CrossRef]

Adv. Funct. Mater.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport and photoconductor properties,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2547–2552 (2010).
[CrossRef]

B. Yan, L. Liao, Y. M. You, X. J. Xu, Z. Zheng, Z. X. Shen, J. Ma, L. M. Tong, and T. Yu, “Single crystalline V2O5 ultralong nanoribbon waveguides,” Adv. Mater. (Deerfield Beach Fla.) 21(23), 2436–2440 (2009).
[CrossRef]

J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual Vanadium Pentoxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 12(6), 420–424 (2000).
[CrossRef]

Appl. Phys. Lett.

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006).
[CrossRef]

L. C. Hsu, Y. P. Kuo, and Y. Y. Li, “On-chip fabrication of an individual α-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching,” Appl. Phys. Lett. 94(13), 133108 (2009).
[CrossRef]

Chem. Phys. Lett.

L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, “Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air,” Chem. Phys. Lett. 456(4–6), 231–235 (2008).
[CrossRef]

J. Appl. Phys.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

J. Mater. Res.

L. Q. Mai, X. Xu, L. Xu, C. H. Han, and Y. Z. Luo, “Vanadium oxide nanowires for Li-ion batteries,” J. Mater. Res. 26(17), 2175–2185 (2011).
[CrossRef]

J. Phys. C Solid State Phys.

N. F. Mott and A. M. Stoneham, “The lifetime of electrons, holes and excitons before self-trapping,” J. Phys. C Solid State Phys. 10(17), 3391–3398 (1977).
[CrossRef]

J. Phys. Chem. Solids

T. M. Searle and B. Bowler, “Optical study of the excited state of the V′ centre in MgO,” J. Phys. Chem. Solids 32(3), 591–602 (1971).
[CrossRef]

Mater. Lett.

X. Y. Xue, T. L. Guo, Z. X. Lin, and T. H. Wang, “Individual core-shell structured ZnSnO3 nanowires as photoconductors,” Mater. Lett. 62(8–9), 1356–1358 (2008).
[CrossRef]

Nanotechnology

Y. J. Chen, C. L. Zhu, M. S. Cao, and T. H. Wang, “Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes,” Nanotechnology 18(28), 285502 (2007).
[CrossRef]

Prog. Mater. Sci.

E. Comini, G. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors,” Prog. Mater. Sci. 54(1), 1–67 (2009).
[CrossRef]

Sensors (Basel Switzerland)

T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Other

N. V. Joshi, Photoconductivity: Art, Science, and Technology (Marcel Dekker, 1990), Chap. 1.

Supplementary Material (1)

» Media 1: MOV (2963 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single-frame excerpts from video recordings (Media 1) of V2O5 nanobelt photoelectric switching test. (a) and (b) The LED is turned on/off when the red laser (671nm) irradiates on/off the switch. (c) and (d) The LED is turned on/off when the green laser (532nm) irradiates on/off the switch.

Fig. 2
Fig. 2

(a) The centimeter-scale single crystalline V2O5 nanobelts. (b) SEM image of the V2O5 nanobelts. The inset is the cross section of a V2O5 nanobelt. (c) TEM image of a V2O5 nanobelt. (d) HRTEM image of a V2O5 nanobelt. The insert shows selected area electron diffraction pattern indexed with the [010] zone axis.

Fig. 3
Fig. 3

(a) Testing scheme of spectra response. (b) The spectra response of the V2O5 nanobelt at different wavelengths (365-680 nm). (c) I–V curves of nanobelts unirridiated and irradiated with constant laser (671 nm and 532 nm) power density of 30.57 mW cm−2. (d) Curves of photocurrent versus light power density at deferent wavelength.

Fig. 4
Fig. 4

(a) The experimental scheme of the photoresponse time. (b) and (c) Response characteristics of the photocurrent of the V2O5 nanobelt under light irradiation (671 nm) switched at a frequency of 10 Hz and 1000 Hz, respectively. The power density is 2.55, 5.10, 10.19, 15.29, 20.38 and 30.57 mW cm–2, respectively. (d) The photocurrent versus switching frequency.

Tables (1)

Tables Icon

Table 1 Response Time for Red Laser (671nm) and Green Laser (532nm)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R λ = ( I p h I D ) / P λ S = I / P λ S
I = I max [ 1 exp ( t / τ r ) ]
I = I max exp ( t / τ d )

Metrics