Abstract

A simple technique has been proposed and demonstrated to generate radio-frequency (RF) signal based on a fiber grating laser with multi-octave tunablity. The laser is fabricated by inscribing a wavelength-matched Bragg grating pair in a short section of low-birefringence Er/Yb co-doped fiber. A RF signal can be obtained by beating the two-polarization mode output with its frequency determined by the birefringence within the cavity. By slicing the laser cavity into two sections and then aligning them with a rotated angle, the output beat frequency can be continuously tuned in a multi-octave frequency range as shown in the experiment from 2.05 GHz down to 289 MHz, as a result of the induced change in optical length for each polarization mode. The present technique has the advantages including simple scheme and large tuning range, and the ability of tuning could be further improved by use of active fibers with higher birefringence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  2. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [CrossRef]
  3. Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
    [CrossRef]
  4. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [CrossRef]
  5. L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-locked loop,” J. Lightwave Technol. 21(2), 511–520 (2003).
    [CrossRef]
  6. N. H. Zhu, H. G. Zhang, J. W. Man, H. L. Zhu, J. H. Ke, Y. Liu, X. Wang, H. Q. Yuan, L. Xie, and W. Wang, “Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection,” Opt. Express 17(24), 22114–22123 (2009).
    [CrossRef] [PubMed]
  7. Y.-S. Juan and F.-Y. Lin, “Photonics generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
    [CrossRef]
  8. X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
    [CrossRef]
  9. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
    [CrossRef]
  10. J. Geng, S. Staines, and S. Jiang, “Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency,” Opt. Lett. 33(1), 16–18 (2008).
    [CrossRef] [PubMed]
  11. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
    [CrossRef]
  12. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
    [CrossRef]
  13. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
    [CrossRef] [PubMed]
  14. B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
    [CrossRef]
  15. S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
    [CrossRef]
  16. M. C. Gross, P. T. Callahan, T. R. Clark, D. Novak, R. B. Waterhouse, and M. L. Dennis, “Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser,” Opt. Express 18(13), 13321–13330 (2010).
    [CrossRef] [PubMed]
  17. S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [CrossRef]
  18. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]

2011 (1)

Y.-S. Juan and F.-Y. Lin, “Photonics generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (3)

2006 (4)

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[CrossRef] [PubMed]

2004 (1)

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

2003 (1)

1999 (1)

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[CrossRef]

1996 (2)

1983 (1)

S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

Andrés, M. V.

Barmenkov, Y. O.

Bretenaker, F.

Brunel, M.

Callahan, P. T.

Chang, G.-K.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Chen, X.

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Cheng, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[CrossRef]

Clark, T. R.

Cruz, J. L.

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Deng, Z.

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

Dennis, M. L.

Dolfi, D.

Dong, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[CrossRef]

Geng, J.

Gross, M. C.

Guan, B. O.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[CrossRef]

Guekos, G.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[CrossRef]

Hodiak, J. H.

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

Huignard, J.-P.

Jia, Z.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Jiang, S.

Johansson, L. A.

Juan, Y.-S.

Y.-S. Juan and F.-Y. Lin, “Photonics generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

Kawaguchi, H.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[CrossRef]

Ke, J. H.

Kringlebotn, J. T.

Laming, R. I.

Le Floch, A.

Lin, F.-Y.

Y.-S. Juan and F.-Y. Lin, “Photonics generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

Liu, Y.

Loh, W. H.

Lord, S. M.

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

Maleki, L.

Man, J. W.

Morvan, L.

Nizzola, P.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[CrossRef]

Novak, D.

Pajarola, S.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[CrossRef]

Pillet, G.

Rashleigh, S.

S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

Seeds, A. J.

Shum, P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[CrossRef]

Staines, S.

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Sun, J.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Tam, H. Y.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[CrossRef]

Torres-Peiró, S.

Vallet, M.

Wang, T.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Wang, W.

Wang, X.

Waterhouse, R. B.

Wu, Y.

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

Xia, L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[CrossRef]

Xie, L.

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Xie, X. B.

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

Yao, J. P.

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

Yao, X. S.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Yu, J.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Yu, P. K. L.

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

Yuan, H. Q.

Zalvidea, D.

Zhang, H. G.

Zhang, L. W.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[CrossRef]

Zhang, Y.

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

Zhou, J. L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[CrossRef]

Zhu, H. L.

Zhu, N. H.

Appl. Phys. B (1)

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[CrossRef]

IEEE Photon. J. (1)

Y.-S. Juan and F.-Y. Lin, “Photonics generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical mililimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Y. Wu, X. B. Xie, J. H. Hodiak, S. M. Lord, and P. K. L. Yu, “Multioctave high dynamic range up-conversion optical heterodyned microwave photonic link,” IEEE Photon. Technol. Lett. 16(10), 2332–2334 (2004).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18(24), 2587–2589 (2006).
[CrossRef]

B. O. Guan, Y. Zhang, L. W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photon. Technol. Lett. 21(11), 727–729 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[CrossRef]

X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the fiber laser for RF frequency tuning.

Fig. 2
Fig. 2

Experimental setup for the frequency tuning of RF signal with a dual-polarization fiber grating laser. ISO: Isolator; WDM: Wavelength-division multiplexer; PD: Photo-detector; PC: Polarization controller.

Fig. 3
Fig. 3

(a) Measured RF spectra of the beat signal at different rotated angle θ. (b) Calculated and measured beat frequency as a function of rotation angle θ between 0° and 90°. Inset, result for full angle range from 0° and 360°.

Fig. 4
Fig. 4

(a) Measured RF spectra with different normalized effective length L1/Leff at θ = π/2. (b) Beat frequency change with normalized effective length L1/Leff at θ = π/2.

Fig. 5
Fig. 5

(a) Measured frequency fluctuation over 30 min. (b) Measured phase noise of the proposed RF generator.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2 k x 0 , y 0 L = 2 M π
2 π c ν x 0 , y 0 ( n s,f L ) = 2 M π
Δ ν 0 = B n 0 ν a v e
T 1 = ( e i 2 π n s ν x c l 1 0 0 e i 2 π n f ν y c l 1 )
T 2 = R ( θ ) ( e i 2 π n s ν x c l 2 0 0 e i 2 π n f ν y c l 2 ) R ( θ )
T 3 = R ( π θ ) ( e i 2 π n s ν x c l 2 0 0 e i 2 π n f ν y c l 2 ) R ( π + θ )
T 4 = R ( π ) ( e i 2 π n s ν x c l 1 0 0 e i 2 π n f ν y c l 1 ) R ( π )
J o u t = T 4 T 3 T 2 T 1 J i n
A sin ( 2 π n s L c υ x ) + B sin ( 2 π ( n s l 1 + n f l 2 ) c υ x ) = 0 C sin ( 2 π ( n f l 1 + n s l 2 ) c υ y ) + D sin ( 2 π n f L ) c υ y ) = 0
J o u t = ( e i 2 k x 0 L e i 2 k y 0 L )
J o u t = ( φ 1 φ 2 ) = ( e i 4 π ( n s l 1 + n f l 2 ) υ x / c e i 4 π ( n f l 1 + n s l 2 ) υ y / c )
Δ ν m i n = B n 0 ν a v e | l 1 l 2 | L = Δ ν 0 | l 1 l 2 | L

Metrics