Abstract

We present metamaterial-induced transparency (MIT) phenomena with enhanced magnetic fields in hybrid dielectric metamaterials. Using two hybrid structures of identical-dielectric-constant resonators (IDRs) and distinct-dielectric-constant resonators (DDRs), we demonstrate a larger group index (ng~354), better bandwidth-delay product (BDP~0.9) than metallic-type metamaterials. The keys to enable these properties are to excite either the trapped mode or the suppressed mode resonances, which can be managed by controlling the contrast of dielectric constants between the dielectric resonators in the hybrid metamaterials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  2. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [CrossRef] [PubMed]
  3. H. B. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008).
    [CrossRef]
  4. A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
    [CrossRef]
  5. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  7. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
    [CrossRef] [PubMed]
  8. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
    [CrossRef]
  9. Z. Y. Li, Y. F. Ma, R. Huang, R. J. Singh, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [CrossRef] [PubMed]
  10. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]
  12. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [CrossRef] [PubMed]
  13. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
    [CrossRef] [PubMed]
  14. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
    [CrossRef] [PubMed]
  15. T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
    [CrossRef]
  16. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant-frequency and bandwidth,” Int. J. Microwave Mill 4(3), 230–247 (1994).
  17. J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
    [CrossRef]
  18. B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
    [CrossRef] [PubMed]
  19. Y. J. Lai, C. K. Chen, and T. J. Yen, “Creating negative refractive identity via single-dielectric resonators,” Opt. Express 17(15), 12960–12970 (2009).
    [CrossRef] [PubMed]
  20. R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag. 45(9), 1348–1356 (1997).
    [CrossRef]
  21. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
    [CrossRef] [PubMed]
  22. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
    [CrossRef] [PubMed]
  23. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
    [CrossRef]
  24. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
    [CrossRef]
  25. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
    [CrossRef]
  26. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
    [CrossRef]
  27. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  28. H. Mosallaei and A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
    [CrossRef]
  29. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
    [CrossRef] [PubMed]
  30. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  31. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  32. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  33. R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” Prog. Opt. 43, 497–530 (2002).
    [CrossRef]
  34. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
    [CrossRef]
  35. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
    [CrossRef] [PubMed]
  36. S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
    [CrossRef]
  37. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
    [CrossRef]
  38. P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
    [CrossRef]
  39. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
    [CrossRef] [PubMed]

2011

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Z. Y. Li, Y. F. Ma, R. Huang, R. J. Singh, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

2010

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
[CrossRef]

2009

2008

H. Mosallaei and A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[CrossRef]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[CrossRef] [PubMed]

H. B. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008).
[CrossRef]

2007

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

2006

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

2005

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
[CrossRef]

2004

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
[CrossRef]

2002

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[CrossRef]

2001

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1997

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag. 45(9), 1348–1356 (1997).
[CrossRef]

1994

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant-frequency and bandwidth,” Int. J. Microwave Mill 4(3), 230–247 (1994).

1990

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Ahmadi, A.

H. Mosallaei and A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[CrossRef]

Akmansoy, E.

T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
[CrossRef]

Alzar, C. L. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[CrossRef]

Anlage, S. M.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bhartia, P.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant-frequency and bandwidth,” Int. J. Microwave Mill 4(3), 230–247 (1994).

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[CrossRef] [PubMed]

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Cao, Z. S.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Chang-Hasnain, C. J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
[CrossRef]

Chen, C. K.

Chen, C. Y.

Chen, Z.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Chuang, S. L.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
[CrossRef]

Cummer, S. A.

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[CrossRef] [PubMed]

Dong, Z. G.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Economou, E. N.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Fan, S. H.

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Fiedziuszko, S. J.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Ganne, J. P.

T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Gea-Banacloche, J.

H. B. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
[CrossRef]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Gu, J. Q.

Hafner, J. H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

Han, J. G.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Huang, R.

Hunter, I. C.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Ibanescu, M.

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Ippen, E.

Itoh, T.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Ittipiboon, A.

R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag. 45(9), 1348–1356 (1997).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
[CrossRef]

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Khurgin, J. B.

Kim, J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
[CrossRef]

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Kobayashi, Y.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Kocharovskaya, O.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

Koschny, Th.

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Ku, P. C.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
[CrossRef]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Kurter, C.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

Lai, Y. J.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Lepetit, T.

T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
[CrossRef]

Li, T.

Li, Z. Y.

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Liu, H.

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Lourtioz, J. M.

T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
[CrossRef]

Ma, Y. F.

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Martinez, M. A. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[CrossRef]

Matsko, A. B.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Mongia, R. K.

R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag. 45(9), 1348–1356 (1997).
[CrossRef]

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant-frequency and bandwidth,” Int. J. Microwave Mill 4(3), 230–247 (1994).

Mosallaei, H.

H. Mosallaei and A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Nishikawa, T.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Nordlander, P.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Nussenzveig, P.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[CrossRef]

Pan, J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Popa, B. I.

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Qu, S. B.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Rostovtsev, Y.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[CrossRef] [PubMed]

Scully, M. O.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

Singh, R. J.

Soljacic, M.

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[CrossRef] [PubMed]

Stitzer, S. N.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Tai, N. H.

Tang, C. J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[CrossRef] [PubMed]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[CrossRef] [PubMed]

Tian, Z.

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

Un, I. W.

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Wakino, K.

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Wang, J.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Wang, J. F.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Wang, S. M.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Wang, Z. L.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Wei, X. Y.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Welch, G. R.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Wu, H. B.

H. B. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008).
[CrossRef]

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Xiao, M.

H. B. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008).
[CrossRef]

Xu, M. X.

Xu, Z.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Yang, Y. M.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Yen, T. J.

Yu, Z. H.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

Zhan, P.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, W. L.

Zhang, X.

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, S. N.

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[CrossRef] [PubMed]

Zibrov, A. S.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Adv. At. Mol. Opt. Phys.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008).
[CrossRef]

Am. J. Phys.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[CrossRef]

Appl. Phys. Lett.

P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag.

R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag. 45(9), 1348–1356 (1997).
[CrossRef]

IEEE Trans. Microw. Theory

S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002).
[CrossRef]

Int. J. Microwave Mill

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant-frequency and bandwidth,” Int. J. Microwave Mill 4(3), 230–247 (1994).

J. Appl. Phys.

J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, and S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004).
[CrossRef]

Nano Lett.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Nat. Photonics

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express

Opt. Photon. News

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Phys. Rev. A

H. B. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008).
[CrossRef]

Phys. Rev. B

T. Lepetit, E. Akmansoy, J. P. Ganne, and J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010).
[CrossRef]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

H. Mosallaei and A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008).
[CrossRef]

Phys. Rev. Lett.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef] [PubMed]

B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[CrossRef] [PubMed]

Phys. Today

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Prog. Opt.

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Science

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Three dielectric resonators and two types of hybrid dielectric metamaterials are shown in (a)-(c): (a) DR-A, DR-B and DR-C (from the left to the right) and the standard waveguide WR-137, (b) IDR-type metamaterial (comprised DR-A and DR-B), and (c) DDR-type metamaterial (comprised DR-B and DR-C).

Fig. 2
Fig. 2

The measured (dashed line) and simulated results (the solid line) are plotted as: (a) transmittance spectra of DR-A (green), DR-B (red), and DR-C (blue), and the transmittance (red) and reflectance (black) spectra of (b) IDR-type metamaterial and (c) DDR-type metamaterial.

Fig. 3
Fig. 3

Calculated x-component of the magnetic field (Hx) and the displacement currents (jd) of (a) the in-phase resonance in the uniform paired DRs; (b) the out-phase resonance in the IDR-type metamaterials, and (c) in the DDR-type metamaterials (corresponding to f2 and f’2). Besides, the split hybridization modes oscillated in the (d) IDR-type metamaterial and (e) in the DDR-type metamaterial. Notably, the color category was normalized.

Fig. 4
Fig. 4

The group delays (τg) were measured in relation to (a) the IDR-type and (b) the DDR-type metamaterials.

Fig. 5
Fig. 5

The group indices value shows as a function of the γ, in which trapped mode resonance is occurring at γ = 1. With larger value of γ, the higher degree of suppressed mode resonance is created.

Tables (1)

Tables Icon

Table 1 Evaluation the slow light performance by bandwidth-delay-product (BDP), where the coupled asymmetric arcs (asy-arcs) [10], coupled cut wire-double split rings resonator (CW-DSRR) [38], and coupled cut wire-split ring resonator (CW-SRR) [39] are metallic-type metamaterial.

Metrics