Abstract

We studied depth-dependent cerebral hemodynamic responses of rat brain following direct cortical electrical stimulation (DCES) in vivo with optical recording of intrinsic signal (ORIS) and near-infrared spectroscopy (NIRS). ORIS is used to visualize the immediate hemodynamic changes in cortical areas following the stimulation, whereas NIRS measures the hemodynamic changes originating from subcortical areas. We found strong hemodynamic changes in relation to DCES both in ORIS and NIRS data. In particular, the signals originating from cortical areas exhibited a tri-phasic response, whereas those originating from subcortical regions exhibited multi-phasic responses. In addition, NIRS signals from two different sets of source-detector separation were compared and analyzed to investigate the causality of perfusion, which demonstrated downstream propagation, indicating that the upper brain region reacted faster than the deep region.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
    [CrossRef] [PubMed]
  2. A. Zepeda, C. Arias, and F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004).
    [CrossRef] [PubMed]
  3. B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
    [CrossRef] [PubMed]
  4. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
    [CrossRef] [PubMed]
  5. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
    [CrossRef] [PubMed]
  6. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
    [CrossRef] [PubMed]
  7. H. Gurden, N. Uchida, and Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006).
    [CrossRef] [PubMed]
  8. Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
    [CrossRef] [PubMed]
  9. J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
    [CrossRef] [PubMed]
  10. R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
    [CrossRef] [PubMed]
  11. C. H. Im, Y. J. Jung, S. Lee, D. Koh, D. W. Kim, and B. M. Kim, “Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS),” Opt. Express 18(6), 5730–5739 (2010).
    [CrossRef] [PubMed]
  12. S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
    [CrossRef] [PubMed]
  13. N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
    [CrossRef] [PubMed]
  14. J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
    [CrossRef] [PubMed]
  15. H. J. Alitto and W. M. Usrey, “Corticothalamic feedback and sensory processing,” Curr. Opin. Neurobiol. 13(4), 440–445 (2003).
    [CrossRef] [PubMed]
  16. H. Blumenfeld and D. A. McCormick, “Corticothalamic inputs control the pattern of activity generated in thalamocortical networks,” J. Neurosci. 20(13), 5153–5162 (2000).
    [PubMed]
  17. J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
    [CrossRef] [PubMed]
  18. P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
    [CrossRef] [PubMed]
  19. F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
    [CrossRef] [PubMed]
  20. L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
    [CrossRef]
  21. S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
    [CrossRef]
  22. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34(1), 22–30 (1995).
    [CrossRef] [PubMed]
  23. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press/Elsevier, Amsterdam Boston, 2007).
  24. B. Champagne, M. Eizenman, and S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991).
    [CrossRef]
  25. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust Speech 24(4), 320–327 (1976).
    [CrossRef]
  26. A. Piersol, “Time delay estimation using phase data,” IEEE Trans. Acoust Speech 29(3), 471–477 (1981).
    [CrossRef]
  27. M. Azaria and D. Hertz, “Time delay estimation by generalized cross correlation methods,” IEEE Trans. Acoust Speech 32(2), 280–285 (1984).
    [CrossRef]
  28. J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004).
    [CrossRef]
  29. M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
    [CrossRef] [PubMed]
  30. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
    [CrossRef]
  31. T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142(3-4), 346–382 (2000).
    [CrossRef]
  32. J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Regression Models, 2nd ed. (Irwin, Homewood, Ill., 1989), pp. xv, 667.
  33. D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
    [CrossRef] [PubMed]
  34. F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
    [CrossRef] [PubMed]
  35. F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
    [CrossRef] [PubMed]
  36. X. Zheng, D. C. Alsop, and G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage  45, 196–201 (2011).
  37. J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
    [CrossRef] [PubMed]
  38. T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
    [CrossRef] [PubMed]
  39. D. P. Purpura and J. G. McMurtry, “Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex,” J. Neurophysiol. 28, 166–185 (1965).
    [PubMed]
  40. N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
    [CrossRef] [PubMed]
  41. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
    [CrossRef] [PubMed]
  42. I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
    [CrossRef] [PubMed]
  43. R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
    [CrossRef] [PubMed]
  44. J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
    [CrossRef] [PubMed]

2011

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

X. Zheng, D. C. Alsop, and G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage  45, 196–201 (2011).

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

2010

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

C. H. Im, Y. J. Jung, S. Lee, D. Koh, D. W. Kim, and B. M. Kim, “Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS),” Opt. Express 18(6), 5730–5739 (2010).
[CrossRef] [PubMed]

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

2009

Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

2008

J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
[CrossRef] [PubMed]

2007

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

2006

H. Gurden, N. Uchida, and Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006).
[CrossRef] [PubMed]

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

2005

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

2004

A. Zepeda, C. Arias, and F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004).
[CrossRef] [PubMed]

J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004).
[CrossRef]

2003

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

H. J. Alitto and W. M. Usrey, “Corticothalamic feedback and sensory processing,” Curr. Opin. Neurobiol. 13(4), 440–445 (2003).
[CrossRef] [PubMed]

2002

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

2001

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[CrossRef] [PubMed]

R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
[CrossRef] [PubMed]

M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
[CrossRef] [PubMed]

J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
[CrossRef] [PubMed]

2000

H. Blumenfeld and D. A. McCormick, “Corticothalamic inputs control the pattern of activity generated in thalamocortical networks,” J. Neurosci. 20(13), 5153–5162 (2000).
[PubMed]

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142(3-4), 346–382 (2000).
[CrossRef]

1999

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

1995

1992

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

1991

B. Champagne, M. Eizenman, and S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991).
[CrossRef]

1990

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

1986

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

1984

M. Azaria and D. Hertz, “Time delay estimation by generalized cross correlation methods,” IEEE Trans. Acoust Speech 32(2), 280–285 (1984).
[CrossRef]

1981

A. Piersol, “Time delay estimation using phase data,” IEEE Trans. Acoust Speech 29(3), 471–477 (1981).
[CrossRef]

1976

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust Speech 24(4), 320–327 (1976).
[CrossRef]

1965

D. P. Purpura and J. G. McMurtry, “Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex,” J. Neurophysiol. 28, 166–185 (1965).
[PubMed]

Abe, T.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Alitto, H. J.

H. J. Alitto and W. M. Usrey, “Corticothalamic feedback and sensory processing,” Curr. Opin. Neurobiol. 13(4), 440–445 (2003).
[CrossRef] [PubMed]

Alsop, D. C.

X. Zheng, D. C. Alsop, and G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage  45, 196–201 (2011).

Amâncio-dos-Santos, A.

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Andermann, M. L.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Andersson-Engels, S.

Arias, C.

A. Zepeda, C. Arias, and F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004).
[CrossRef] [PubMed]

Azaria, M.

M. Azaria and D. Hertz, “Time delay estimation by generalized cross correlation methods,” IEEE Trans. Acoust Speech 32(2), 280–285 (1984).
[CrossRef]

Barbosa, C.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

Baudewig, J.

J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
[CrossRef] [PubMed]

Bejarano, B.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

Benesty, J.

J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004).
[CrossRef]

Beop-Min, K.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

Biag, J. D.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Birbaumer, N.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Blumenfeld, H.

H. Blumenfeld and D. A. McCormick, “Corticothalamic inputs control the pattern of activity generated in thalamocortical networks,” J. Neurosci. 20(13), 5153–5162 (2000).
[PubMed]

Boas, D. A.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Boggio, P. S.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

Bordier, C.

Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Bouchard, M. B.

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

Bressler, S. L.

M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
[CrossRef] [PubMed]

Buckwalter, J. A.

J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
[CrossRef] [PubMed]

Burgess, S. A.

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

Burns, G. A. P. C.

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

Buxton, R. B.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
[CrossRef] [PubMed]

Carter, G.

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust Speech 24(4), 320–327 (1976).
[CrossRef]

Celnik, P.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Champagne, B.

B. Champagne, M. Eizenman, and S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991).
[CrossRef]

Changkyun, I.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

Chen, B. R.

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

Chen, J.

J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004).
[CrossRef]

Choi, J. H.

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Cohen, L. G.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

D’Arceuil, H. E.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Dale, A. M.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Dalkwon, K.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

Das, A.

Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

De Crespigny, A. J.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Devor, A.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Ding, M. Z.

M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
[CrossRef] [PubMed]

Dunn, A. K.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Eizenman, M.

B. Champagne, M. Eizenman, and S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991).
[CrossRef]

Eshima, N.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Eubank, S.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

Farmer, J. D.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

Floel, A.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Frahm, J.

J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
[CrossRef] [PubMed]

Fregni, F.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Frostig, R. D.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Fujiki, M.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Galdrikian, B.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

Gerloff, C.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Gilbert, C. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Giraux, P.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Goñi, J.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

Gratton, E.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Grebe, R.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Grinvald, A.

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[CrossRef] [PubMed]

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Guan, C. T.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Guedes, R. C.

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Gurden, H.

H. Gurden, N. Uchida, and Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006).
[CrossRef] [PubMed]

Hendrich, K.

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

Hertz, D.

M. Azaria and D. Hertz, “Time delay estimation by generalized cross correlation methods,” IEEE Trans. Acoust Speech 32(2), 280–285 (1984).
[CrossRef]

Hilgetag, C. C.

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

Hillman, E. M.

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Hoogduin, H.

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

Hoshi, Y.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Huang, Y.

J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004).
[CrossRef]

Hummel, F.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Hyun, J. L.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

Hyung-Cheul, S.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

Im, C. H.

Ishikawa, A.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Jones, S. R.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

Jung, Y. J.

Kamida, T.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Kaminski, M.

M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
[CrossRef] [PubMed]

Kim, B. M.

C. H. Im, Y. J. Jung, S. Lee, D. Koh, D. W. Kim, and B. M. Kim, “Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS),” Opt. Express 18(6), 5730–5739 (2010).
[CrossRef] [PubMed]

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Kim, D. W.

Kim, S. G.

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

Knapp, C.

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust Speech 24(4), 320–327 (1976).
[CrossRef]

Kobayashi, H.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Koh, D.

C. H. Im, Y. J. Jung, S. Lee, D. Koh, D. W. Kim, and B. M. Kim, “Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS),” Opt. Express 18(6), 5730–5739 (2010).
[CrossRef] [PubMed]

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Kong, S.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Kurz, R.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Kwon, K.

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Lang, Y.

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Lee, H. J.

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Lee, M.

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

Lee, S.

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

C. H. Im, Y. J. Jung, S. Lee, D. Koh, D. W. Kim, and B. M. Kim, “Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS),” Opt. Express 18(6), 5730–5739 (2010).
[CrossRef] [PubMed]

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Liebetanz, D.

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Lieke, E.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

Liu, T. T.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Longtin, A.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

Lu, K.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Luijten, P. R.

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

Mahmoudzadeh, M.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Mainen, Z. F.

H. Gurden, N. Uchida, and Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006).
[CrossRef] [PubMed]

Mandeville, J. B.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Marcolin, M. A.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

Marota, J. J.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Masdeu, J. C.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

May, L. D.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

McCaslin, A. F.

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

McCormick, D. A.

H. Blumenfeld and D. A. McCormick, “Corticothalamic inputs control the pattern of activity generated in thalamocortical networks,” J. Neurosci. 20(13), 5153–5162 (2000).
[PubMed]

McMurtry, J. G.

D. P. Purpura and J. G. McMurtry, “Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex,” J. Neurophysiol. 28, 166–185 (1965).
[PubMed]

Michalos, A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Mitsuyama, S.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Monte-Silva, K. K.

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Morecraft, R. J.

J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
[CrossRef] [PubMed]

Narayanan, S. N.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

Nehlig, A.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Nitsche, M. A.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
[CrossRef] [PubMed]

O’Neil, M. A.

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

Oliveira, M. B.

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Osei, E. K.

Osharina, V.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Parvizi, J.

J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
[CrossRef] [PubMed]

Pascual-Leone, A.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

Pastor, M. A.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

Pasupathy, S.

B. Champagne, M. Eizenman, and S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991).
[CrossRef]

Patterson, M. S.

Paulus, W.

J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
[CrossRef] [PubMed]

Paunescu, L. A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Petridou, N.

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

Piersol, A.

A. Piersol, “Time delay estimation using phase data,” IEEE Trans. Acoust Speech 29(3), 471–477 (1981).
[CrossRef]

Prakash, N.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Purpura, D. P.

D. P. Purpura and J. G. McMurtry, “Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex,” J. Neurophysiol. 28, 166–185 (1965).
[PubMed]

Ramachandra, C.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Ramsey, N. F.

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

Rigonatti, S. P.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

Roche-Labarbe, N.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Rosen, B. R.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Scadeng, M.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Scannell, J. W.

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

Schlaug, G.

X. Zheng, D. C. Alsop, and G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage  45, 196–201 (2011).

Schmitz, A.

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142(3-4), 346–382 (2000).
[CrossRef]

Schreiber, T.

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142(3-4), 346–382 (2000).
[CrossRef]

Sengpiel, F.

A. Zepeda, C. Arias, and F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004).
[CrossRef] [PubMed]

Sepulcre, J.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

Seungduk, L.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

Sheth, S. A.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Shimizu, K.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Shin, H. C.

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

Siero, J. C.

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

Sirotin, Y. B.

Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Sitaram, R.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Teng, I. C.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Theiler, J.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

Theriot, J.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Thulasidas, M.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Tian, P.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Toga, A. W.

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

Toronov, V.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Truccolo, W. A.

M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
[CrossRef] [PubMed]

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

Uchida, N.

H. Gurden, N. Uchida, and Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006).
[CrossRef] [PubMed]

Ugurbil, K.

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

Ulbert, I.

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Usrey, W. M.

H. J. Alitto and W. M. Usrey, “Corticothalamic feedback and sensory processing,” Curr. Opin. Neurobiol. 13(4), 440–445 (2003).
[CrossRef] [PubMed]

van Hoesen, G. W.

J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
[CrossRef] [PubMed]

Vanzetta, I.

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[CrossRef] [PubMed]

Villoslada, P.

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

Wallois, A.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Wallois, F.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Wang, P.

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

Wiesel, T. N.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Wilson, B. C.

Wolf, M.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Wolf, U.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

Wu, W. H.

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Young, M. P.

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

Zaaimi, B.

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

Zepeda, A.

A. Zepeda, C. Arias, and F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004).
[CrossRef] [PubMed]

Zhang, H. H.

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

Zhao, F.

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

Zheng, X.

X. Zheng, D. C. Alsop, and G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage  45, 196–201 (2011).

Appl. Opt.

Behav. Brain Res.

T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011).
[CrossRef] [PubMed]

Biol. Cybern.

M. Kamiński, M. Z. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001).
[CrossRef] [PubMed]

Bipolar Disord.

F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006).
[CrossRef] [PubMed]

Brain

F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, and L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005).
[CrossRef] [PubMed]

Cereb. Cortex

J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, and M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol.

H. J. Alitto and W. M. Usrey, “Corticothalamic feedback and sensory processing,” Curr. Opin. Neurobiol. 13(4), 440–445 (2003).
[CrossRef] [PubMed]

Epilepsia

N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010).
[CrossRef] [PubMed]

IEEE Trans. Acoust Speech

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust Speech 24(4), 320–327 (1976).
[CrossRef]

A. Piersol, “Time delay estimation using phase data,” IEEE Trans. Acoust Speech 29(3), 471–477 (1981).
[CrossRef]

M. Azaria and D. Hertz, “Time delay estimation by generalized cross correlation methods,” IEEE Trans. Acoust Speech 32(2), 280–285 (1984).
[CrossRef]

IEEE Trans. Signal Process.

B. Champagne, M. Eizenman, and S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991).
[CrossRef]

IEEE Trans. Speech Audi P

J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004).
[CrossRef]

J Korean Phys Soc

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011).
[CrossRef]

J Opt Soc Korea

S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, and B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009).
[CrossRef]

J. Biomed. Opt.

S. Lee, M. Lee, D. Koh, B. M. Kim, and J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, and N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011).
[CrossRef] [PubMed]

J. Comp. Neurol.

J. A. Buckwalter, J. Parvizi, R. J. Morecraft, and G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008).
[CrossRef] [PubMed]

J. Neurophysiol.

D. P. Purpura and J. G. McMurtry, “Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex,” J. Neurophysiol. 28, 166–185 (1965).
[PubMed]

J. Neurosci.

H. Blumenfeld and D. A. McCormick, “Corticothalamic inputs control the pattern of activity generated in thalamocortical networks,” J. Neurosci. 20(13), 5153–5162 (2000).
[PubMed]

J. Neurosci. Methods

A. Zepeda, C. Arias, and F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004).
[CrossRef] [PubMed]

Magn. Reson. Med.

J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001).
[CrossRef] [PubMed]

Nature

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Neuroimag

X. Zheng, D. C. Alsop, and G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage  45, 196–201 (2011).

Neuroimage

F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, and S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006).
[CrossRef] [PubMed]

B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, and E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011).
[CrossRef] [PubMed]

J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, and P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009).
[CrossRef] [PubMed]

R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007).
[CrossRef] [PubMed]

N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002).
[CrossRef] [PubMed]

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[CrossRef] [PubMed]

R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
[CrossRef] [PubMed]

Neuron

H. Gurden, N. Uchida, and Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Neurosci. Lett.

D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, and R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006).
[CrossRef] [PubMed]

Opt. Express

Physica D

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992).
[CrossRef]

T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D 142(3-4), 346–382 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

Y. B. Sirotin, E. M. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005).
[CrossRef] [PubMed]

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010).
[CrossRef] [PubMed]

Other

J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Regression Models, 2nd ed. (Irwin, Homewood, Ill., 1989), pp. xv, 667.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press/Elsevier, Amsterdam Boston, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental scheme for simultaneous optical recording of intrinsic signal (ORIS) and near-infrared spectroscopy (NIRS)

Fig. 2
Fig. 2

Stimulation paradigm and imaging with ORIS and NIRS. Monophasic trains with pulse widths of 10 msec were delivered at a frequency of 3.3 Hz for 10 seconds. NIRS and ORIS were alternatively applied every 30 minutes.

Fig. 3
Fig. 3

Time courses of the hemodynamic responses and the ORIS and NIRS to DCES in three subjects (a) rat #2, (b) rat #7 and (c) rat #4. The hemodynamic responses were normalized to the maximum peak value. Black color indicates changes in the NIRS deoxyhemoglobin (△Hbr) signal averaged by the front channels (channels 1, 2, and 3). Blue, green, red and yellow color represents ORIS regions of interest (ROIs) 1, 2, 3 and 4, respectively, as shown in the exposed cortical surface image.

Fig. 6
Fig. 6

The patterns of ORIS data following DCES. Examples from three different animals (a, b, & c) are presented. In each panel, the upper left image illustrates the imaged cortical area. The long rectangle is a strip-image of ORIS, which was obtained by adding all pixels of the x-axis values at each y-axis value. In the strip-image, a thick black line indicates the 10-second long direct electrical stimulation. In each panel, the bottom four images represent ORIS obtained at 30, 120, 300, and 600 seconds, respectively, during each trial. The black arrow head indicates the location of stimulating electrode. The red color indicates an increase in ΔHbr. A clear tri-phasic response was observed in all three examples.

Fig. 4
Fig. 4

Hemodynamic responses of ORIS and NIRS to DCES for two trials of an imaging session (a) first and (b) second trial during 170 seconds. A thick vertical black line in yellow area represents stimulation.

Fig. 5
Fig. 5

Causal interaction between the front and rear NIRS channels signals for two trials (a) first and (b) second trial. Red arrows indicate a significant relationship with p<0.01 and blue arrows indicate a significant relationship with p<0.05. The arrow direction represents the signal flow direction.

Tables (1)

Tables Icon

Table 1 Coefficient of determination using third polynomial fitting for all subjects

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ O D λ = ln I F i n a l I I n i t i a l = ( ε H b O 2 λ Δ [ H b O 2 ] + ε H b r λ Δ [ H b r ] ) B λ L ,
Δ [ H b O 2 ] = ε H b r λ 1 Δ O D λ 2 B λ 2 ε H b r λ 2 Δ O D λ 1 B λ 1 ( ε H b r λ 1 ε H b O 2 λ 2 ε H b r λ 2 ε H b O 2 λ 1 ) L ,
Δ [ H b r ] = ε H b O 2 λ 2 Δ O D λ 1 B λ 1 ε H b O 2 λ 1 Δ O D λ 2 B λ 2 ( ε H b r λ 1 ε H b O 2 λ 2 ε H b r λ 2 ε H b O 2 λ 1 ) L .
R X Y ( τ ) = E [ X ( t ) Y ( t τ ) ]
R 2 = S S R S S T O = 1 S S E S S T O .

Metrics