Abstract

We propose and demonstrate the scaling up of photonic graph states through path qubit fusion. Two path qubits from separate two-photon four-qubit states are fused to generate a two-dimensional seven-qubit graph state composed of polarization and path qubits. Genuine seven-qubit entanglement is verified by evaluating the witness operator. Six qubits from the graph state are used to demonstrate the Deutsch-Jozsa algorithm for general two-bit functions with a success probability greater than 90%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Raussendorf, H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
    [CrossRef] [PubMed]
  2. H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
    [CrossRef]
  3. D. E. Browne, T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
    [CrossRef] [PubMed]
  4. C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
    [CrossRef]
  5. X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
    [CrossRef]
  6. W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
    [CrossRef] [PubMed]
  7. R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
    [CrossRef] [PubMed]
  8. W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
    [CrossRef]
  9. P. Kalasuwan, G. Mendoza, A. Laing, T. Nagata, J. Coggins, M. Callaway, S. Takeuchi, A. Stefanov, J. L. O’Brien, “Simple scheme for expanding photonic cluster states for quantum information,” J. Opt. Soc. Am. B 27, A181–A184 (2010).
    [CrossRef]
  10. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
  11. G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
  12. K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
    [CrossRef] [PubMed]
  13. M. S. Tame, M. S. Kim, “Scalable method for demonstrating the Deutsch-Jozsa and Bernstein-Vazirani algorithms using cluster states,” Phys. Rev. A 82, 030305 (2010).
    [CrossRef]
  14. H. S. Park, J. Cho, J. Y. Lee, D.-H. Lee, S.-K. Choi, “Two-photon four-qubit cluster state generation based on a polarization-entangled photon pair,” Opt. Express 15, 17960–17966 (2007).
    [CrossRef] [PubMed]
  15. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [CrossRef]
  16. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
    [CrossRef]
  17. B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.
  18. G. Tóth, O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Phys. Rev. Lett. 94, 060501 (2005).
    [CrossRef] [PubMed]
  19. G. Tóth, O. Gühne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005).
    [CrossRef]
  20. G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
    [CrossRef]
  21. Y.-S. Kim, O. Kwon, S. M. Lee, J.-C. Lee, H. Kim, S.-K. Choi, H. S. Park, Y.-H. Kim, “Observation of Young’s double-slit interference with the three-photon N00N state,” Opt. Express 19, 24957–24966 (2011).
    [CrossRef]
  22. Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
    [CrossRef]

2011

2010

P. Kalasuwan, G. Mendoza, A. Laing, T. Nagata, J. Coggins, M. Callaway, S. Takeuchi, A. Stefanov, J. L. O’Brien, “Simple scheme for expanding photonic cluster states for quantum information,” J. Opt. Soc. Am. B 27, A181–A184 (2010).
[CrossRef]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

M. S. Tame, M. S. Kim, “Scalable method for demonstrating the Deutsch-Jozsa and Bernstein-Vazirani algorithms using cluster states,” Phys. Rev. A 82, 030305 (2010).
[CrossRef]

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

2009

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

2007

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

H. S. Park, J. Cho, J. Y. Lee, D.-H. Lee, S.-K. Choi, “Two-photon four-qubit cluster state generation based on a polarization-entangled photon pair,” Opt. Express 15, 17960–17966 (2007).
[CrossRef] [PubMed]

2005

G. Tóth, O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Phys. Rev. Lett. 94, 060501 (2005).
[CrossRef] [PubMed]

G. Tóth, O. Gühne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005).
[CrossRef]

D. E. Browne, T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[CrossRef] [PubMed]

2002

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

2001

R. Raussendorf, H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

1999

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

1997

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).

Altepeter, J. B.

Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Berardi, V.

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).

Briegel, H. J.

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

R. Raussendorf, H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Browne, D. E.

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

D. E. Browne, T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[CrossRef] [PubMed]

Bruno, N.

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

Cabello, A.

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

Callaway, M.

Ceccarelli, R.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

Chen, K.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Chen, S.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Chen, Y.-A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Chen, Z.-B.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

Chiuri, A.

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

Cho, J.

Choi, S.-K.

Coggins, J.

De Martini, F.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).

den Nest, M. V.

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

Donati, G.

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

Dür, W.

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

Everhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Gao, W.-B.

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Goebel, A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Gühne, O.

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

G. Tóth, O. Gühne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005).
[CrossRef]

G. Tóth, O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Phys. Rev. Lett. 94, 060501 (2005).
[CrossRef] [PubMed]

Huang, Y.-P.

Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Jennewein, T.

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

Kalasuwan, P.

Kim, H.

Kim, M. S.

M. S. Tame, M. S. Kim, “Scalable method for demonstrating the Deutsch-Jozsa and Bernstein-Vazirani algorithms using cluster states,” Phys. Rev. A 82, 030305 (2010).
[CrossRef]

Kim, Y.-H.

Kim, Y.-S.

Kofler, J.

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

Kumar, P.

Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).

Kwon, O.

Laing, A.

Lee, D.-H.

Lee, J. Y.

Lee, J.-C.

Lee, S. M.

Li, C.-M.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Lu, C.-Y.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Lundeen, J. S.

B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.

Ma, X.-s.

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

Mair, A.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Mataloni, P.

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).

Matsumoto, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

Mendoza, G.

Mosley, P. J.

B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.

Nagata, T.

Nakamura, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

Nambu, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

O’Brien, J. L.

Pan, J.-W.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Park, H. S.

Peng, C.-Z.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

Pomarico, E.

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).

Qarry, A.

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

Raussendorf, R.

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

R. Raussendorf, H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Rudolph, T.

D. E. Browne, T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[CrossRef] [PubMed]

Smith, B. J.

B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.

Stefanov, A.

Takeuchi, S.

Tame, M. S.

M. S. Tame, M. S. Kim, “Scalable method for demonstrating the Deutsch-Jozsa and Bernstein-Vazirani algorithms using cluster states,” Phys. Rev. A 82, 030305 (2010).
[CrossRef]

Tóth, G.

G. Tóth, O. Gühne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005).
[CrossRef]

G. Tóth, O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Phys. Rev. Lett. 94, 060501 (2005).
[CrossRef] [PubMed]

Tsuda, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

Usami, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

Vallone, G.

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Walmsley, I. A.

B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Xu, P.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

Yang, T.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Yao, X.-C.

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

Yuan, Z.-S.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zeilinger, A.

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

Zhang, J.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zhang, Q.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

Zhou, X.-Q.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

J. Mod. Opt.

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).

J. Opt. Soc. Am. B

Nat. Phys.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009).
[CrossRef]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010).
[CrossRef]

Opt. Express

Phys. Rev. A

X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009).
[CrossRef]

G. Tóth, O. Gühne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005).
[CrossRef]

G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010).
[CrossRef]

Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

M. S. Tame, M. S. Kim, “Scalable method for demonstrating the Deutsch-Jozsa and Bernstein-Vazirani algorithms using cluster states,” Phys. Rev. A 82, 030305 (2010).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002).
[CrossRef]

Phys. Rev. Lett.

G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[CrossRef] [PubMed]

W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010).
[CrossRef] [PubMed]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef] [PubMed]

R. Raussendorf, H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

D. E. Browne, T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[CrossRef] [PubMed]

G. Tóth, O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Phys. Rev. Lett. 94, 060501 (2005).
[CrossRef] [PubMed]

Other

B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Seven-qubit graph state generation and measurement. (a) Schematic of path qubit fusion gate. (b) Generation of four-photon seven-qubit graph state from two two-photon four-qubit linear graph states. Polarization qubit p i and path (spatial) qubit s i are encoded in photon i. FG: fusion gate. (c) Overall experimental setup. BP: birefringent prism, Q: quarter-wave plate, H: half-wave plate, P: polarizer, SMF: single-mode fiber, NPBS: non-polarizing beam splitter, BCQ: birefringence-compensating quartz crystal, PFQ: polarization-flipping quartz crystal, PS: phase shifter, WOC: walkoff compensator, SPC: single-photon counter (PerkinElmer SPCM-AQ4C), IF: interference filter (10 nm for SPC1 and SPC2, 5 nm for SPC3 and SPC4). The angles of the wave plates denote the direction of the slow axis with respect to the horizontal.

Fig. 2
Fig. 2

Interference between the |0〉- and |1〉-components of fused path qubit. Four-fold coincidence counts in 800 s with qubits p1p4 and s1s2 projected to |0〉 and |+〉, respectively, and qubit s3 projected to ( | 0 + e i ϕ | 1 ) / 2 . Error bars denote ± counts .

Fig. 3
Fig. 3

General two-bit Deutsch-Jozsa algorithm on the 4P7Q state. (a) Structure of graph state and logic flow. (b) Measured output probabilities (%) for ancilla qubit (y) and query qubit (x1 and x2). (i), (iii), (v), (vii) are results for functions f({0, 1, 2, 3}) = {0, 0, 0, 0}, {0, 0, 1, 1}, {0, 1, 0, 1}, {0, 1, 1, 0}, respectively.

Fig. 4
Fig. 4

Phase offset of the interference fringes from the fused path qubit with concurrent ambient temperature.

Fig. 5
Fig. 5

Photon bunching measurement at output ports for (a) SPC3 port and (b) SPC4.

Tables (4)

Tables Icon

Table 1 Expectation Values of Stabilizer Operators and Entanglement Witness

Tables Icon

Table 2 (a) X-measurement for Path qubits and Z-measurement for Polarization Qubits; Coincidence Counts in 500 s; (b) Z-measurement for Path qubits and X-measurement for Polarization Qubits; Coincidence Counts in 2000 s

Tables Icon

Table 4 Slow Axes Orientations of the Wave Plates

Tables Icon

Table 3 Measurement Bases and Measured Coincidence Counts in 1000 s for DJA Execution

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W = 3 I 2 [ i = 1 3 S ( s i ) + I 2 + i = 1 4 S ( p i ) + I 2 ] .
| ψ = a | Φ a | 0 s 1 | 0 s 2 + b | Φ b | 0 s 1 | 1 s 2 + c | Φ c | 1 s 1 | 0 s 2 + d | Φ d | 1 s 1 | 1 s 2 ,
| ψ NPBS = a 2 | Φ a | 0 s + d 2 𝒰 p 1 p 2 | Φ d | 1 s ,
| ψ B P = a ( | H p 2 H | p 2 | Φ a ) | 0 s + d 𝒰 p 1 p 2 ( | V p 1 | V p 1 V | p 1 | Φ d ) | 1 s ,

Metrics