Abstract

We demonstrate a novel localized surface-plasmon resonance sensor that can distinguish surface binding interactions from interfering bulk effects. This is accomplished by utilizing the longitudinal and transverse plasmon modes of gold nanorods. We have investigated, both numerically and experimentally, the effect of change in background refractive index and surface binding on the two resonances of a gold nanorod on an indium tin oxide coated glass substrate.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  2. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [CrossRef]
  3. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
    [CrossRef]
  4. E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006).
    [CrossRef] [PubMed]
  5. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
    [CrossRef] [PubMed]
  6. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  7. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
    [CrossRef] [PubMed]
  8. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
    [CrossRef]
  9. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
    [CrossRef]
  10. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  11. J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express 15(26), 17661–17672 (2007).
    [CrossRef] [PubMed]
  12. J. Homola, H. B. Lu, and S. S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105–1106 (1999).
    [CrossRef]
  13. R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–938 (2006).
    [CrossRef]
  14. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33(5), 512–514 (2008).
    [CrossRef] [PubMed]
  15. V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1-3), 1–38 (2009).
    [CrossRef]
  16. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  18. G. M. Huda, E. U. Donev, M. P. Mengüç, and J. T. Hastings, “Effects of a silicon probe on gold nanoparticles on glass under evanescent illumination,” Opt. Express 19(13), 12679–12687 (2011).
    [CrossRef] [PubMed]
  19. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
    [CrossRef]
  20. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
    [CrossRef] [PubMed]
  21. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
    [CrossRef] [PubMed]

2011 (1)

2009 (2)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1-3), 1–38 (2009).
[CrossRef]

2008 (5)

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33(5), 512–514 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[CrossRef]

2007 (2)

2006 (2)

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–938 (2006).
[CrossRef]

E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006).
[CrossRef] [PubMed]

2005 (2)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

2004 (2)

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

1999 (1)

J. Homola, H. B. Lu, and S. S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105–1106 (1999).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Bachas, L. G.

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[CrossRef]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Donev, E. U.

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Fuentes, A.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Gao, J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Gole, A. M.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Gou, L.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Guo, J.

Haes, A. J.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Hafner, J. H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Hastings, J. T.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–938 (2006).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, H. B. Lu, and S. S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105–1106 (1999).
[CrossRef]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Huda, G. M.

Hunyadi, S. E.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Keathley, P. D.

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

Kumaresh, P. B.

Law, S.

Lee, S.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Li, T.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Liao, H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Lu, H. B.

J. Homola, H. B. Lu, and S. S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105–1106 (1999).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Mayer, K. M.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Mengüç, M. P.

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Murphy, C. J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Nehl, C. L.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

Orendorff, C. J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Park, K.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1-3), 1–38 (2009).
[CrossRef]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[CrossRef]

Poelsema, B.

E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006).
[CrossRef] [PubMed]

Rostro, B. C.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Sau, T. K.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Scully, P. T.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Sharma, V.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1-3), 1–38 (2009).
[CrossRef]

Slavík, R.

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–938 (2006).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Srinivasarao, M.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1-3), 1–38 (2009).
[CrossRef]

Stefan Kooij, E.

E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006).
[CrossRef] [PubMed]

Vaisocherová, H.

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–938 (2006).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Wang, J.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

Wei, Y.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, H. B. Lu, and S. S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105–1106 (1999).
[CrossRef]

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

ACS Nano (1)

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 21(48), 4880–4910 (2009).
[CrossRef]

Anal. Bioanal. Chem. (2)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. Homola, H. B. Lu, and S. S. Yee, “Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer,” Electron. Lett. 35(13), 1105–1106 (1999).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

J. Phys. Chem. B (2)

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Langmuir (1)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[CrossRef] [PubMed]

Laser Photonics Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1-3), 1–38 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol. 17(4), 932–938 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Other (1)

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross section of the geometry used for simulation measurements, and (b) Calculated transverse (left) and longitudinal (right) resonance for a gold nanorod on ITO coated glass substrate. The shift in resonance wavelengths is due to either a change in solution index by 0.068 RIU or adsorption of a 5-nm thick layer.

Fig. 2
Fig. 2

SEM images of nanorod arrays of sizes 125nm by 57nm (top) and 182nm by 69nm (bottom) and a pitch size of 1µm fabricated using electron beam lithography.

Fig. 3
Fig. 3

Schematic of the optical setup used for scattering measurements.

Fig. 4
Fig. 4

Shift in (a) transverse and (b) longitudinal resonance for an array of nanorods of size 110nm by 54nm with a change in surrounding refractive index from air to water and,(c) unpolarized scattering spectra for nanorod arrays of various sizes. Arrow indicates increasing rod length as indicated in the legend. The width of these nanorods range from 50 to 58nm.

Fig. 5
Fig. 5

Sensor response of biotin functionalized gold nanorod array to streptavidin binding. (a,b) Shift in transverse and longitudinal resonance wavelength versus time. (c,d) Bulk refractive index and relative surface layer coverage calculated from (a,b). The solutions were introduced through the flowcell in the following order: (1) buffer, (2) buffer with 50% glycerol, and (3) buffer with streptavidin. Inset in (a) shows a schematic of the flow cell and (b) SEM image of the nanorods used for sensing. Scale bar represents 200nm.

Fig. 6
Fig. 6

Sensor response of biotin functionalized gold nanorod array to streptavidin binding. (a,b) Shift in transverse and longitudinal resonance wavelength versus time. (c,d) Bulk refractive index and relative surface layer coverage calculated from (a,b). The solutions were introduced through the flowcell in the following order: (1) buffer, (2) buffer with 50% glycerol, and (3) buffer with streptavidin. Inset in (b) displays the SEM image of the nanorod used for sensing. Scale bar is 200nm.

Tables (1)

Tables Icon

Table 1 Calculated bulk and surface sensitivities for the longitudinal and transverse surface plasmon modes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ L = S B L Δ n B + S S L Δ C S
Δ λ T = S B T Δ n B + S S T Δ C S
Δ C S = Δ λ T S B T Δ λ L S B L S S T S B T S S L S B L
Δ n B = Δ λ T S S T Δ λ L S S L S B T S S T S B L S S L

Metrics