Abstract

We describe laser-induced two-dimensional periodic photonic structures formed by localized particle-like excitations in an untwisted confined cholesteric liquid crystal. The individual particle-like excitations (dubbed “Torons”) contain three-dimensional twist of the liquid crystal director matched to the uniform background director field by topological point defects. Using both single-beam-steering and holographic pattern generation approaches, the periodic crystal lattices are tailored by tuning their periodicity, reorienting their crystallographic axes, and introducing defects. Moreover, these lattices can be dynamically reconfigurable: generated, modified, erased and then recreated, depending on the needs of a particular photonic application. This robust control is performed by tightly focused laser beams of power 10-100 mW and by low-frequency electric fields at voltages ~10 V applied to the transparent electrodes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  2. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
    [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. J. Yamamoto and H. Tanaka, “Dynamic control of the photonic smectic order of membranes,” Nat. Mater. 4(1), 75–80 (2005).
    [CrossRef] [PubMed]
  6. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
    [CrossRef] [PubMed]
  7. P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc. 2004).
  8. B. Y. Zhang, F. B. Meng, and Y. H. Cong, “Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases,” Opt. Express 15(16), 10175–10181 (2007).
    [CrossRef] [PubMed]
  9. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [CrossRef] [PubMed]
  10. P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  11. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  12. I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
    [CrossRef] [PubMed]
  13. P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
    [CrossRef]
  14. I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
    [CrossRef] [PubMed]
  15. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
    [CrossRef] [PubMed]
  16. O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
    [CrossRef]
  17. D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
    [CrossRef]
  18. I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
    [CrossRef] [PubMed]
  19. R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
    [CrossRef]
  20. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [CrossRef] [PubMed]
  21. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
    [CrossRef]
  22. R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
    [CrossRef] [PubMed]
  23. I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  24. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981).
    [CrossRef]
  25. E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
    [CrossRef] [PubMed]
  26. I I. C. Khoo, T. H. Liu, and P. Y. Yan, “Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment,” J. Opt. Soc. Am. B 4, 115 (1987).
    [CrossRef]
  27. V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
    [CrossRef]
  28. J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
    [CrossRef]
  29. T. Akahane and T. Tako, “Molecular alignment of cholesteric bubble domains cholesteric-nematic mixtures,” Jpn. J. Appl. Phys. 15(8), 1559–1560 (1976).
    [CrossRef]
  30. S. Pirkl, P. Ribiere, and P. Oswald, “Forming process and stability of bubble domains in dielectrically positive cholesteric liquid crystals,” Liq. Cryst. 13(3), 413–425 (1993).
    [CrossRef]
  31. J. M. Gilli and L. Gil, “Static and dynamic textures obtained under an electric field in the neighborhood of the winding transition of a strongly confined cholesteric,” Liq. Cryst. 17(1), 1–15 (1994).
    [CrossRef]
  32. B. Kerllenevich and A. Coche, “Bubble domains in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 68(1), 47–55 (1981).
    [CrossRef]
  33. W. E. L. Haas and J. E. Adams, “New optical storage mode in liquid crystals,” Appl. Phys. Lett. 25(10), 535–537 (1974).
    [CrossRef]

2011

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

2010

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
[CrossRef] [PubMed]

O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
[CrossRef]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[CrossRef] [PubMed]

2009

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[CrossRef] [PubMed]

2007

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

B. Y. Zhang, F. B. Meng, and Y. H. Cong, “Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases,” Opt. Express 15(16), 10175–10181 (2007).
[CrossRef] [PubMed]

2006

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

2005

J. Yamamoto and H. Tanaka, “Dynamic control of the photonic smectic order of membranes,” Nat. Mater. 4(1), 75–80 (2005).
[CrossRef] [PubMed]

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

2000

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

1998

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

1994

J. M. Gilli and L. Gil, “Static and dynamic textures obtained under an electric field in the neighborhood of the winding transition of a strongly confined cholesteric,” Liq. Cryst. 17(1), 1–15 (1994).
[CrossRef]

1993

S. Pirkl, P. Ribiere, and P. Oswald, “Forming process and stability of bubble domains in dielectrically positive cholesteric liquid crystals,” Liq. Cryst. 13(3), 413–425 (1993).
[CrossRef]

1987

I I. C. Khoo, T. H. Liu, and P. Y. Yan, “Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment,” J. Opt. Soc. Am. B 4, 115 (1987).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
[CrossRef] [PubMed]

1981

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981).
[CrossRef]

B. Kerllenevich and A. Coche, “Bubble domains in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 68(1), 47–55 (1981).
[CrossRef]

1976

T. Akahane and T. Tako, “Molecular alignment of cholesteric bubble domains cholesteric-nematic mixtures,” Jpn. J. Appl. Phys. 15(8), 1559–1560 (1976).
[CrossRef]

V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
[CrossRef]

1974

W. E. L. Haas and J. E. Adams, “New optical storage mode in liquid crystals,” Appl. Phys. Lett. 25(10), 535–537 (1974).
[CrossRef]

Abbate, G.

E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
[CrossRef] [PubMed]

Ackerman, P.

O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
[CrossRef]

Adams, J. E.

W. E. L. Haas and J. E. Adams, “New optical storage mode in liquid crystals,” Appl. Phys. Lett. 25(10), 535–537 (1974).
[CrossRef]

Akahane, T.

T. Akahane and T. Tako, “Molecular alignment of cholesteric bubble domains cholesteric-nematic mixtures,” Jpn. J. Appl. Phys. 15(8), 1559–1560 (1976).
[CrossRef]

Arakelian, S. M.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981).
[CrossRef]

Baudry, J.

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

Bertness, K. A.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[CrossRef] [PubMed]

Bhide, V. G.

V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
[CrossRef]

Bodnar, V. H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Brasselet, E.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[CrossRef] [PubMed]

Buey, J.

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

Chandra, S.

V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
[CrossRef]

Clark, N. A.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
[CrossRef] [PubMed]

Coche, A.

B. Kerllenevich and A. Coche, “Bubble domains in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 68(1), 47–55 (1981).
[CrossRef]

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Cong, Y. H.

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Crossland, W. A.

O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
[CrossRef]

Diez, L.

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

Durbin, S. D.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981).
[CrossRef]

Engström, D.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

Espinet, P.

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

Gartland, E. C.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Gil, L.

J. M. Gilli and L. Gil, “Static and dynamic textures obtained under an electric field in the neighborhood of the winding transition of a strongly confined cholesteric,” Liq. Cryst. 17(1), 1–15 (1994).
[CrossRef]

Gilli, J. M.

J. M. Gilli and L. Gil, “Static and dynamic textures obtained under an electric field in the neighborhood of the winding transition of a strongly confined cholesteric,” Liq. Cryst. 17(1), 1–15 (1994).
[CrossRef]

Goksör, M.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Haas, W. E. L.

W. E. L. Haas and J. E. Adams, “New optical storage mode in liquid crystals,” Appl. Phys. Lett. 25(10), 535–537 (1974).
[CrossRef]

Huang, H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Jain, S. C.

V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
[CrossRef]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[CrossRef] [PubMed]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

Kerllenevich, B.

B. Kerllenevich and A. Coche, “Bubble domains in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 68(1), 47–55 (1981).
[CrossRef]

Khoo, I I. C.

Kitzerow, H.-S.

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

Kosa, T.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

Lansac, Y.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
[CrossRef] [PubMed]

Lavrentovich, O. D.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Lee, T.

Linden, S.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

Liu, T. H.

Maddalena, P.

E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
[CrossRef] [PubMed]

Medhekar, R. K.

V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
[CrossRef]

Meng, F. B.

Miguel, J. A.

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[CrossRef] [PubMed]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[CrossRef] [PubMed]

Oswald, P.

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

S. Pirkl, P. Ribiere, and P. Oswald, “Forming process and stability of bubble domains in dielectrically positive cholesteric liquid crystals,” Liq. Cryst. 13(3), 413–425 (1993).
[CrossRef]

Palffy-Muhoray, P.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Persson, M.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Pirkl, S.

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

S. Pirkl, P. Ribiere, and P. Oswald, “Forming process and stability of bubble domains in dielectrically positive cholesteric liquid crystals,” Liq. Cryst. 13(3), 413–425 (1993).
[CrossRef]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

Ribiere, P.

S. Pirkl, P. Ribiere, and P. Oswald, “Forming process and stability of bubble domains in dielectrically positive cholesteric liquid crystals,” Liq. Cryst. 13(3), 413–425 (1993).
[CrossRef]

Santamato, E.

E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
[CrossRef] [PubMed]

Senyuk, B. I.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Shen, Y. R.

E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
[CrossRef] [PubMed]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981).
[CrossRef]

Smalyukh, I. I.

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
[CrossRef] [PubMed]

O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
[CrossRef]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Taheri, B.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Tako, T.

T. Akahane and T. Tako, “Molecular alignment of cholesteric bubble domains cholesteric-nematic mixtures,” Jpn. J. Appl. Phys. 15(8), 1559–1560 (1976).
[CrossRef]

Tanaka, H.

J. Yamamoto and H. Tanaka, “Dynamic control of the photonic smectic order of membranes,” Nat. Mater. 4(1), 75–80 (2005).
[CrossRef] [PubMed]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

Trivedi, R. P.

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
[CrossRef] [PubMed]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[CrossRef] [PubMed]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

Trushkevych, O.

O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
[CrossRef]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, J.

J. Yamamoto and H. Tanaka, “Dynamic control of the photonic smectic order of membranes,” Nat. Mater. 4(1), 75–80 (2005).
[CrossRef] [PubMed]

Yan, P. Y.

Zhang, B. Y.

Appl. Phys. B

J. Buey, L. Diez, P. Espinet, H.-S. Kitzerow, and J. A. Miguel, “Optical storage effect in a platinum orthometalated liquid crystal,” Appl. Phys. B 66(3), 355–358 (1998).
[CrossRef]

Appl. Phys. Lett.

W. E. L. Haas and J. E. Adams, “New optical storage mode in liquid crystals,” Appl. Phys. Lett. 25(10), 535–537 (1974).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

O. Trushkevych, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, “Optically generated adaptive localized structures in confined Chiral liquid crystals doped with fullerene,” Appl. Phys. Lett. 97(20), 201906 (2010).
[CrossRef]

J. Appl. Phys.

V. G. Bhide, S. Chandra, S. C. Jain, and R. K. Medhekar, “Structure and properties of bubble domains in cholesteric-nematic mixtures,” J. Appl. Phys. 47(1), 120–126 (1976).
[CrossRef]

J. Opt.

R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Akahane and T. Tako, “Molecular alignment of cholesteric bubble domains cholesteric-nematic mixtures,” Jpn. J. Appl. Phys. 15(8), 1559–1560 (1976).
[CrossRef]

Liq. Cryst.

S. Pirkl, P. Ribiere, and P. Oswald, “Forming process and stability of bubble domains in dielectrically positive cholesteric liquid crystals,” Liq. Cryst. 13(3), 413–425 (1993).
[CrossRef]

J. M. Gilli and L. Gil, “Static and dynamic textures obtained under an electric field in the neighborhood of the winding transition of a strongly confined cholesteric,” Liq. Cryst. 17(1), 1–15 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

B. Kerllenevich and A. Coche, “Bubble domains in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 68(1), 47–55 (1981).
[CrossRef]

Nat. Mater.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9, 139–145 (2010).
[CrossRef] [PubMed]

J. Yamamoto and H. Tanaka, “Dynamic control of the photonic smectic order of membranes,” Nat. Mater. 4(1), 75–80 (2005).
[CrossRef] [PubMed]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Nature

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rep.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007).
[CrossRef]

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

Phys. Rev. A

E. Santamato, G. Abbate, P. Maddalena, and Y. R. Shen, “Optically induced twist Fréedericksz transitions in planar-aligned nematic liquid crystals,” Phys. Rev. A 36(5), 2389–2392 (1987).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[CrossRef] [PubMed]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

Soft Matter

D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011).
[CrossRef]

Other

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc. 2004).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).

Supplementary Material (11)

» Media 1: AVI (1651 KB)     
» Media 2: AVI (2550 KB)     
» Media 3: AVI (3022 KB)     
» Media 4: AVI (3784 KB)     
» Media 5: AVI (3754 KB)     
» Media 6: AVI (3407 KB)     
» Media 7: AVI (3559 KB)     
» Media 8: AVI (3615 KB)     
» Media 9: AVI (2319 KB)     
» Media 10: AVI (474 KB)     
» Media 11: AVI (1859 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical realignment and generation of localized structures in homeotropic CLC cells. (a,b) Schematics of (a) the initial uniform director configuration in the homeotropic unwound cholesteric and (b) the laser-induced realignment of n ^ ( r ) . (c) Dynamically-generated periodic structures induced using laser intensities Ith < I < Ith2; the distortions of n ^ ( r ) are continuously induced in the new locations of an unwound cholesteric cell (Media 1) and disappear after a typical for thin cells LC relaxation time of 5-10 ms after the laser beam is shifted to a new location or switched off; the width of the image is 200 μm. (d) Polarized optical micrograph showing a 2D pattern of Torons stable after turning off the laser; the 100μm-wide pattern is sequentially generated by using a scanned laser beam of intensity I > Ith2 (Media 2).

Fig. 2
Fig. 2

3PEF-PM imaging of laser-generated director structures. (a) In-plane 3PEF-PM image obtained for circular polarization of excitation light. (b) Reconstructed director field in the vertical cross-section of the axially symmetric Toron and (c) the corresponding vertical cross-section 3PEF-PM image obtained for the circular polarization of excitation laser light.

Fig. 3
Fig. 3

Polarized optical micrographs of laser-induced patterns of Torons generated using HOLCAS. (a) A pattern forming the letters ‘LCMRC’. (b) Square-periodic 2D array of Torons with a deliberately introduced dislocation in the center and (c) the corresponding Voronoi construction; the image in (a) is 250 μm in width. (d) A 2D spiraling pattern of Torons and (e) the corresponding Voronoi diagram. The lateral size of Torons in (b) and (d) is 5 μm.

Fig. 4
Fig. 4

Polarized optical micrographs showing photonic structures of Torons generated using the laser beam scanning approach. (a) Sequentially-generated 20x20 square array of Torons. (Media 3); the image is 280 μm in width. (b) Square-periodic pattern of Torons having an L-shaped channel with vertical n ^ ( r ) (Media 4); the image width is 320 μm. (c) Sequential generation of a hexagonal array of Torons (Media 5); the image width is 330 μm. (d) A square-periodic array of Torons with a bifurcated channel (Media 6); the image width is 320 μm. The micrographs were obtained using two crossed polarizers oriented along vertical and horizontal edges.

Fig. 5
Fig. 5

Sequentially generated square-periodic pattern obtained by laser beam scanning method. In a cell with (a) initial homeotropic alignment of n ^ ( r ) , the scanned beam first generates (b) a square-periodic pattern of sparsely spaced Torons with a larger periodicity and then (c) additional Torons are introduced in-between the Torons of the original square array so that (d) the final translationally periodic pattern of Torons has a smaller periodicity. (Media 7) The optical micrographs have 320 μm in width and were obtained between two crossed polarizers oriented along the vertical and horizontal image edges.

Fig. 6
Fig. 6

Schematics of switching between a uniform unwound and 3D localized twisted configurations. (a) Cholesteric LC with the tendency to twist (shown by the spiral in the inset) is unwound via confinement into a cell with strong vertical surface boundary conditions. (b) Schematic illustration of elastic free energy dependence on q = 2π/p showing two local/global minima corresponding to the unwound state shown in (a) and 3D twisted state of the Toron structure shown in (c). The cell can be switched between the unwound state shown in (a) and the 3D twisted state shown in (c) by laser beam helping to overcome the elastic energy barrier separating the two distinct states. For LC materials with positive Δεlf, the localized structure shown in (c) can be unwound and transformed to the uniform n ^ ( r ) shown in (a) by voltage applied to the transparent electrodes at confining plates, as marked by the green arrow in (b).

Fig. 7
Fig. 7

Generation of cholesteric fingers via continuous scanning of a focused laser beam. (a) Scanning of the laser beam along a perimeter of a rectangle causes a complex dynamics and slight stretching of Torons along the direction of beam scanning (Media 8). (b) Merging of Torons along the direction of laser beam scanning to form the linear structures of cholesteric fingers (Media 9). (c) Director structures comprising Torons and fingers obtained by means of computer-programmed laser scanning. (d) Generation of linear defect structures via merging of Torons (Media 10). (e) The linear defect structures can be also generated via continuous slow scanning of a focused beam in a homeotropic cell (Media 11). The lateral size of Torons and fingers in (a-e) is 5 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f e l a s t i c = K 11 2 ( n ^ ) 2 + K 22 2 [ n ^ ( × n ^ ) + 2 π p ] 2 + K 33 2 [ n ^ × ( × n ^ ) ] 2 K 24 { [ n ^ ( × n ^ ) + n ^ × ( × n ^ ) ] } ,
f e l e c t r i c =   ε 0 2 Δ ε ( E n ^ ) 2
U t h = π ( 1 4 ρ 2 K 22 2 / K 33 2 ) ( K 33 / Δ ε ) = U t h _ n e m a t i c 1 4 ρ 2 K 22 2 / K 33 2 ,
I t h = ( π 2 K 33 c n e 2 ) ( n e 2 n o 2 ) n o d 2 ( 1 4 ρ 2 K 22 2 K 33 2 ) ,
I t h _ n e m a t i c =   π 2 K 33 c n e 2 ( n e 2 n o 2 ) n o d 2   ,

Metrics