Abstract

Sub-meter distributed optical fiber sensing based on Brillouin optical time-domain analysis with differential pulse-width pairs (DPP-BOTDA) is combined with the use of optical pre-amplification and pulse coding. In order to provide significant measurement SNR enhancement and to avoid distortions in the Brillouin gain spectrum due to acoustic-wave pre-excitation, the pulse width and duty cycle of Simplex coding based on return-to-zero pulses are optimized through simulations. In addition, the use of linear optical pre-amplification increases the receiver sensitivity and the overall dynamic range of DPP-BOTDA measurements. Experimental results demonstrate for first time a spatial resolution of ~25 cm over a 60 km standard single-mode fiber (equivalent to ~240k discrete sensing points) with temperature resolution of 1.2°C and strain resolution of 24 με.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [CrossRef]
  2. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  3. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  4. Y. Dong and X. Bao, “High spatial resolution and long-distance BOTDA using differential Brillouin gain in a dispersion shifted fiber,” Proc. SPIE 7503, 750384 (2009).
  5. M. D. Jones, “Using Simplex codes to improve OTDR sensitivity,” IEEE Photon. Technol. Lett. 5(7), 822–824 (1993).
    [CrossRef]
  6. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett. 35(10), 1503–1505 (2010).
    [CrossRef] [PubMed]
  7. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  8. J. C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [CrossRef] [PubMed]
  9. A. Minardo, R. Bernini, and L. Zeni, “A Simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [CrossRef]
  10. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [CrossRef] [PubMed]
  11. A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (3)

2009 (2)

Y. Dong and X. Bao, “High spatial resolution and long-distance BOTDA using differential Brillouin gain in a dispersion shifted fiber,” Proc. SPIE 7503, 750384 (2009).

A. Minardo, R. Bernini, and L. Zeni, “A Simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

2008 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

1993 (1)

M. D. Jones, “Using Simplex codes to improve OTDR sensitivity,” IEEE Photon. Technol. Lett. 5(7), 822–824 (1993).
[CrossRef]

Bao, X.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A Simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

Beugnot, J. C.

Bolognini, G.

Chen, L.

Di Pasquale, F.

Dong, Y.

Y. Dong and X. Bao, “High spatial resolution and long-distance BOTDA using differential Brillouin gain in a dispersion shifted fiber,” Proc. SPIE 7503, 750384 (2009).

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Jones, M. D.

M. D. Jones, “Using Simplex codes to improve OTDR sensitivity,” IEEE Photon. Technol. Lett. 5(7), 822–824 (1993).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Li, W.

Li, Y.

Liang, H.

Linze, N.

Mafang, S. F.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A Simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Thévenaz, L.

Tur, M.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A Simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. D. Jones, “Using Simplex codes to improve OTDR sensitivity,” IEEE Photon. Technol. Lett. 5(7), 822–824 (1993).
[CrossRef]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A Simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[CrossRef]

J. Lightwave Technol. (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

Y. Dong and X. Bao, “High spatial resolution and long-distance BOTDA using differential Brillouin gain in a dispersion shifted fiber,” Proc. SPIE 7503, 750384 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Normalized differential Brillouin gain as a function of the pair pulse-width, for a pulse-width difference of 2 ns (the x-axis represents the longest width of the pair).

Fig. 2
Fig. 2

Normalized differential SBS gain as a function of time, resulting from the differential pulse-width pair technique when using a 58/60-ns pump pulse pair (the normalized pulse amplitude is also shown). For clarity only the interaction of the first 2 bits of a Simplex-coded sequence is reported.

Fig. 3
Fig. 3

Additional Brillouin gain (as a function of the time slot) resulting from nonlinear inter-pulse Brillouin interaction when using Simplex-coding in DPP-BOTDA sensors.

Fig. 4
Fig. 4

Setup of implemented Simplex-coded DPP-BOTDA sensor.

Fig. 5
Fig. 5

Decoded differential BOTDA trace versus fiber length in proximity of fiber end, for two probe signal frequency shift values (10.870 GHz and 10.892 GHz), showing Brillouin gain variations for the fiber lying inside the TCC.

Fig. 6
Fig. 6

Measured (decoded) BGS as a function of the distance near the far fiber-end (~60 km).

Fig. 7
Fig. 7

Decoded BOTDA traces at the Brillouin gain peak when using 60 ns RZ pulses and 511-bit Simplex coding, with (red line) and without (blue line) optical pre-amplification.

Fig. 8
Fig. 8

Temperature profile as a function of the distance near the far fiber-end (~60 km).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ I C W ( t , ν ) υ g t / 2 υ g t / 2 + Δ z g B ( ξ , ν ) I p ( ξ , ν ) d ξ ,
( z + 1 v g t ) E P ( z , t ) = i 1 2 g 2 ( z ) Q ( z , t ) E S ( z , t ) , ( z + 1 v g t ) E S ( z , t ) = i 1 2 g 2 ( z ) Q * ( z , t ) E P ( z , t ) , ( t + Γ A ) Q ( z , t ) = i g 1 ( z ) E P ( z , t ) E S * ( z , t ) ,
P S ( z = 0 , Ω , t ) = | E S 0 + e S | 2 | E S 0 | 2 + 2 Re { E S 0 * e S ( z = 0 , Ω , t ) } .
Δ P I N , Ω B ( t ) Re { E S 0 * e S ( z = 0 , Ω B , t | t t 0 , t 0 > > τ A ) } .
δ ν B = Δ ν B 2 ( S N R ) 1 / 4 .

Metrics