Abstract

We report on the measurement of the frequency noise power spectral density in a distributed feedback quantum cascade laser over a wide temperature range, from 128 K to 303 K. As a function of the device temperature, we show that the frequency noise behavior is characterized by two different regimes separated by a steep transition at ≈200 K. While the frequency noise is nearly unchanged above 200 K, it drastically increases at lower temperature with an exponential dependence. We also show that this increase is entirely induced by current noise intrinsic to the device. In contrast to earlier publications, a single laser is used here in a wide temperature range allowing the direct assessment of the temperature dependence of the frequency noise.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
    [CrossRef] [PubMed]
  3. S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
    [CrossRef]
  4. T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
    [CrossRef] [PubMed]
  5. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
    [CrossRef] [PubMed]
  6. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, D. Hofstetter, and P. Thomann, “Frequency noise of free-running room temperature quantum cascade lasers,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CB4_3.
  7. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
    [CrossRef] [PubMed]
  8. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
    [CrossRef] [PubMed]
  9. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
    [CrossRef]
  10. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [CrossRef]
  11. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
    [CrossRef]
  12. L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum cascade assessed from its frequency noise spectrum and impact of the current driver,” accepted for publication in Appl. Phys. B (2012)
  13. I. D. Henning, “Linewidth broadening in semiconductor lasers due to mode competition noise,” Electron. Lett. 19(22), 935–936 (1983).
    [CrossRef]
  14. S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
    [CrossRef]
  15. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
    [CrossRef]
  16. S. Huxtable, A. Shakouri, P. Abraham, C. Yi-Jen, F. Xiafeng, J. E. Bowers, and A. Majumdar, “Thermal conductivity of Indium Phosphide based superlattices,” in Proc. 18th International Conference on Thermoelectrics (1999).
  17. S. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2012).
    [CrossRef]
  18. G. Bosman, Noise in Physical Systems and 1/f Fluctuations (World Scientific, 2001).
  19. X. Y. Chen, F. N. Hooge, M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron. 41(9), 1269–1275 (1997).
    [CrossRef]
  20. T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
    [CrossRef]
  21. G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [CrossRef] [PubMed]
  22. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
    [CrossRef] [PubMed]

2012

S. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2012).
[CrossRef]

2011

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
[CrossRef] [PubMed]

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

2010

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
[CrossRef] [PubMed]

2008

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

2006

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

2004

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

2003

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

2002

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

1999

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

1997

X. Y. Chen, F. N. Hooge, M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron. 41(9), 1269–1275 (1997).
[CrossRef]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1983

I. D. Henning, “Linewidth broadening in semiconductor lasers due to mode competition noise,” Electron. Lett. 19(22), 935–936 (1983).
[CrossRef]

1982

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

Aellen, T.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Akikusa, N.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Baillargeon, J. N.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Bartalini, S.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Beck, M.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Blaser, S.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

Borri, S.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Cancio, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Capasso, F.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Castrillo, A.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Chen, X. Y.

X. Y. Chen, F. N. Hooge, M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron. 41(9), 1269–1275 (1997).
[CrossRef]

Cho, A. Y.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chu, R.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

De Natale, P.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Di Domenico, G.

Di Francesco, J.

Edamura, T.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Faist, J.

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
[CrossRef] [PubMed]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fichtenbaum, N.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Fleetwood, D. M.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Fujita, K.

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Galli, I.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Gianfrani, L.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Gini, E.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Giovannini, M.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Giusfredi, G.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Gmachl, C.

Gmachl, C. F.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Hartman, J. S.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Henning, I. D.

I. D. Henning, “Linewidth broadening in semiconductor lasers due to mode competition noise,” Electron. Lett. 19(22), 935–936 (1983).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

Hofstetter, D.

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
[CrossRef] [PubMed]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Hooge, F. N.

X. Y. Chen, F. N. Hooge, M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron. 41(9), 1269–1275 (1997).
[CrossRef]

Hoyler, N.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Kan, H.

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Kelly, J. F.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Koblmueller, G.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Lee, S. H. K.

S. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2012).
[CrossRef]

Leys, M. R.

X. Y. Chen, F. N. Hooge, M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron. 41(9), 1269–1275 (1997).
[CrossRef]

Maulini, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Mazzotti, D.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Mishra, U. K.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Pantelides, S. T.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Pastor, P. C.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

Poblenz, C.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Puzyrev, Y. S.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Roy, T.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Schilt, S.

Schrimpf, R. D.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Sharpe, S. W.

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Shen, X.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Speck, J. S.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Suh, C. S.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

Terazzi, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

Thomann, P.

Tombez, L.

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Yamanishi, M.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[CrossRef] [PubMed]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Yu, J. S.

S. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2012).
[CrossRef]

Zhang, E. X.

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2012).
[CrossRef]

Appl. Phys. Lett.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83(10), 1929 (2003).
[CrossRef]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006).
[CrossRef]

T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett. 99(20), 203501 (2011).
[CrossRef]

Electron. Lett.

I. D. Henning, “Linewidth broadening in semiconductor lasers due to mode competition noise,” Electron. Lett. 19(22), 935–936 (1983).
[CrossRef]

IEEE J. Quantum Electron.

S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 47(7), 984–988 (2011).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Proc. SPIE

S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999).
[CrossRef]

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Solid-Sate Electron.

X. Y. Chen, F. N. Hooge, M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron. 41(9), 1269–1275 (1997).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004).
[CrossRef] [PubMed]

Other

G. Bosman, Noise in Physical Systems and 1/f Fluctuations (World Scientific, 2001).

S. Huxtable, A. Shakouri, P. Abraham, C. Yi-Jen, F. Xiafeng, J. E. Bowers, and A. Majumdar, “Thermal conductivity of Indium Phosphide based superlattices,” in Proc. 18th International Conference on Thermoelectrics (1999).

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, D. Hofstetter, and P. Thomann, “Frequency noise of free-running room temperature quantum cascade lasers,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CB4_3.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum cascade assessed from its frequency noise spectrum and impact of the current driver,” accepted for publication in Appl. Phys. B (2012)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission spectra corresponding to various ro-vibrational transitions in the R-branch of the fundamental (0→1) CO vibrational band. These experimental curves are obtained for a 1-cm pathlength through the gas cell filled with ≈20 mbar of pure CO.

Fig. 2
Fig. 2

(a) Current-tuning coefficient of the laser measured for several operating conditions, showing an average value close to 500 MHz/mA. (b) Power-tuning coefficient of the laser obtained at different temperatures and currents.

Fig. 3
Fig. 3

Frequency noise PSD of a 4.55-µm DFB-QCL measured at different temperatures ranging from 128 K to 283 K. The laser operating current is in the range 120-180 mA and was adjusted to i0/ith ≈1.5 at each temperature.

Fig. 4
Fig. 4

Temperature dependence of the frequency noise PSD of the QCL measured at 3 kHz Fourier frequency (red diamonds). While constant at high temperature, the frequency noise strongly increases below 200 K. The grey lines result from a fit of the experimental data on both sides of the transition, corresponding to S3kHz = 7·106 Hz2/Hz for T > 200 K and S3kHz(T) ≈2·1012 exp(−0.06 T) for T < 200 K. The black crosses represent the noise measured on the voltage across the laser, converted into an equivalent frequency noise using the laser differential resistance and the current-tuning coefficient. The yellow markers represent published values of QCLs frequency noise obtained at different temperatures [5, 7, 8].

Fig. 5
Fig. 5

Current noise PSD (A2/Hz) measured directly between the QCL anode and cathode at different temperatures. It shows the same 1/f nature and the same increase of two orders of magnitude at cryogenic temperature than the optically-measured frequency noise.

Fig. 6
Fig. 6

Temperature dependence of the QCL FWHM linewidth calculated from the measured frequency noise spectra (at 5 ms observation time). Constant sub-MHz linewidth is achieved above 200 K, whereas an exponential increase occurs below 200 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ T = R t h δ P = R t h U 0 δ i
R t h = ( Δ v / Δ P ) · ( Δ v / Δ T ) 1

Metrics