Abstract

This work reports on the spectral dependence of both nonlinear refraction and absorption in lead-germanium oxide glasses (PbO-GeO2) containing silver nanoparticles. We have found that this material is suitable for all-optical switching at telecom wavelengths but at the visible range it behaves either as a saturable absorber or as an optical limiter.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (Wiley, (2004)).
  2. D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
    [CrossRef]
  3. L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
    [CrossRef]
  4. L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
    [CrossRef]
  5. C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.
  6. D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
    [CrossRef]
  7. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [CrossRef] [PubMed]
  8. L. De Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Z-scan measurements using femtosecond continuum generation,” Opt. Express 12(17), 3921–3927 (2004).
    [CrossRef] [PubMed]
  9. T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
    [CrossRef]
  10. S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
    [CrossRef]
  11. P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
    [CrossRef]
  12. U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
    [CrossRef]
  13. L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
    [CrossRef]
  14. X. H. Wang, D. P. West, N. B. McKeown, and T. A. King, “Determining the cubic susceptibility (3) of films or glasses by the maker fringe method: a representative study of spin-coated films of copper phthalocyanine derivation,” J. Opt. Soc. Am. B 15(7), 1895–1902 (1998).
    [CrossRef]
  15. V. Mamidala, G. Xing, and W. Ji, “Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites,” J. Phys. Chem. C 114(51), 22466–22471 (2010).
    [CrossRef]
  16. E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
    [CrossRef]
  17. D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
    [CrossRef]
  18. G. I. Stegeman, Nonlinear Optics of Organic Molecules and Polymers (CRC, (1997)).
  19. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14(20), 1140–1142 (1989).
    [CrossRef] [PubMed]
  20. J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonça, “Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses,” Opt. Express 19(18), 17220–17225 (2011).
    [CrossRef] [PubMed]
  21. G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
    [CrossRef]
  22. Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
    [CrossRef]

2011 (2)

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonça, “Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses,” Opt. Express 19(18), 17220–17225 (2011).
[CrossRef] [PubMed]

2010 (1)

V. Mamidala, G. Xing, and W. Ji, “Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites,” J. Phys. Chem. C 114(51), 22466–22471 (2010).
[CrossRef]

2009 (1)

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

2008 (3)

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[CrossRef]

2007 (2)

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

2006 (2)

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

2004 (3)

P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
[CrossRef]

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

L. De Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Z-scan measurements using femtosecond continuum generation,” Opt. Express 12(17), 3921–3927 (2004).
[CrossRef] [PubMed]

1999 (1)

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

1998 (2)

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

X. H. Wang, D. P. West, N. B. McKeown, and T. A. King, “Determining the cubic susceptibility (3) of films or glasses by the maker fringe method: a representative study of spin-coated films of copper phthalocyanine derivation,” J. Opt. Soc. Am. B 15(7), 1895–1902 (1998).
[CrossRef]

1989 (2)

Acioli, L.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Almeida, J. M. P.

Andrade, A. A.

Andrejco, M. J.

Araújo, C. B.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

Bell, M. J. V.

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

Bhaktha, B. N. S.

P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
[CrossRef]

Bomfim, F. A.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

Boni, L.

L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[CrossRef]

Borsella, E.

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

Bosco, C.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Brooks, E.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

Bubb, D. M.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

Chen, D.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Chen, D.-J.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Cohanoschi, I.

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Corrêa, D. S.

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

da Silva, D. M.

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

De, G.

P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
[CrossRef]

de Araujo, C. B.

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

de Araújo, C.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

de Araújo, C. B.

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.

De Boni, L.

Delong, K. W.

dos Santos, F. E. P.

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

Faccio, D.

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

Falcão-Filho, E.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Falcão-Filho, E. L.

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.

Feng, J.-Y.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Gomes, A. S. L.

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

Gómes, A. S. L.

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

Gomez, L. A.

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

Gonella, F.

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

Gong, H.-M.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Gurudas, U.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

Han, J.-B.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Hayakawa, T.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Heiroth, S.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

Hernandes, A. C.

Hernandez, F. E.

L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[CrossRef]

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Hora, W. G.

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

Ji, W.

V. Mamidala, G. Xing, and W. Ji, “Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites,” J. Phys. Chem. C 114(51), 22466–22471 (2010).
[CrossRef]

Kassab, L. R. P.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.

King, T. A.

Kiran, P. P.

P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
[CrossRef]

Li, H.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

Lin, G.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Lipovskii, A.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Lippert, T.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

Luo, F.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Lüthi, S. R.

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

Maciel, G.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Malvezzi, A. M.

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

Mamidala, V.

V. Mamidala, G. Xing, and W. Ji, “Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites,” J. Phys. Chem. C 114(51), 22466–22471 (2010).
[CrossRef]

Martinelli, J. R.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

Mazzoldi, P.

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

McKeown, N. B.

Mendonca, C. R.

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Mendonça, C. R.

Misoguti, L.

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

L. De Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Z-scan measurements using femtosecond continuum generation,” Opt. Express 12(17), 3921–3927 (2004).
[CrossRef] [PubMed]

Mizrahi, V.

Neto, J. J.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

Nogami, M.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Oliveira, T. R.

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.

Pan, H.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Qiu, J.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

Qu, S.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

Rao, D. N.

P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
[CrossRef]

Ren, J.-J.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Said, A. A.

Saifi, M. A.

Selvan, S. T.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Sheik-Bahae, M.

Silva, D. M.

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.

Smedskjaer, M. M.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Stegeman, G. I.

Tagantsev, D.

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Teng, Y.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Toro, C.

L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[CrossRef]

Trapani, P. D.

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

Van Stryland, E. W.

Wang, Q.-Q.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Wang, X. H.

West, D. P.

Wetter, N. U.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

Wokaun, A.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

Wood, E. L.

L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[CrossRef]

Xing, G.

V. Mamidala, G. Xing, and W. Ji, “Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites,” J. Phys. Chem. C 114(51), 22466–22471 (2010).
[CrossRef]

Zhang, Y.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

Zhao, Q.

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

Zhao, X.-J.

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Zhu, C.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

Zilio, S. C.

Adv. Funct. Mater. (1)

Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, and J.-J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16(18), 2405–2408 (2006).
[CrossRef]

Appl. Phys. B (1)

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94(2), 239–242 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

L. A. Gomez, F. E. P. dos Santos, A. S. L. Gómes, C. B. de Araujo, L. R. P. Kassab, and W. G. Hora, “Near-infrared third-order nonlinearity of PbO–GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92(14), 141916 (2008).
[CrossRef]

D. M. da Silva, L. R. P. Kassab, S. R. Lüthi, C. B. de Araújo, A. S. L. Gomes, and M. J. V. Bell, “Frequency upconversion in Er3+ doped PbO–GeO2 glasses containing metallic nanoparticles,” Appl. Phys. Lett. 90(8), 081913 (2007).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Europhys. Lett. (1)

D. Faccio, P. D. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, “Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range,” Europhys. Lett. 43(2), 213–218 (1998).
[CrossRef]

J. Appl. Phys. (2)

P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped SiO2 Sol-Gel,” J. Appl. Phys. 96(11), 6717–6723 (2004).
[CrossRef]

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532nm using picoseconds laser pulse,” J. Appl. Phys. 104(7), 073107 (2008).
[CrossRef]

J. Lumin. (1)

C. B. de Araújo, T. R. Oliveira, E. L. Falcão-Filho, D. M. Silva, and L. R. P. Kassab, “Nonlinear optical properties of PbO–GeO2 films containing gold nanoparticles,” J. Lumin.In press.

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao, “Universal preparation of novel metal and semiconductor nanoparticle-glass composites with excellent nonlinear optical properties,” J. Phys. Chem. C 115(50), 24598–24604 (2011).
[CrossRef]

V. Mamidala, G. Xing, and W. Ji, “Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites,” J. Phys. Chem. C 114(51), 22466–22471 (2010).
[CrossRef]

Opt. Commun. (1)

D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[CrossRef]

Phys. Rev. B (1)

E. Falcão-Filho, C. Bosco, G. Maciel, L. Acioli, C. de Araújo, A. Lipovskii, and D. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B 69(13), 134204 (2004).
[CrossRef]

Plasmonics (1)

L. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[CrossRef]

Other (2)

P. N. Prasad, Nanophotonics (Wiley, (2004)).

G. I. Stegeman, Nonlinear Optics of Organic Molecules and Polymers (CRC, (1997)).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Linear absorption (lines) and normalized transmittance (symbols) spectra for glass samples with and without Ag NPs. (b) Size distribution histogram of Ag NPs for sample C. The inset shows the image of Ag NPs investigated with a high resolution TEM.

Fig. 2
Fig. 2

Typical (a) open- and (b) closed-aperture Z-scan curves obtained at several wavelengths in sample C. The solid lines represent fittings achieved with Eq. (1) and (2) respectively. In (b) the curves are vertically shifted by 0.5. The pulse energy and the beam waist used in the open aperture Z-scan are 34 nJ and 16 μm for 500 nm, 29 nJ and 17 μm for 550 nm, 27 nJ and 18 μm for 600 nm, 23 nJ and 19 μm for 650 nm, 19 nJ and 20 μm for 700. The pulse energy and the beam waist used in the closed aperture Z-scan are 8 nJ and 16 μm for 560 nm, 16 nJ and 17μm for 650 nm, 16 nJ and 18 μm for 750, 17 nJ and 18.5 μm for 800 nm and 62 nJ and 20 μm for 1300 nm.

Fig. 3
Fig. 3

(a) Two-photon absorption coefficient for samples A (open squares), B (open circles) and C (open triangles), together with absorbance spectra (lines); (b) nonlinear refraction spectra for samples A (open squares), B (open circles) and C (open triangles), together with absorbance spectra (lines). In (b), the black dashed line is just to guide the eyes and the error bars come from the average of three measurements.

Fig. 4
Fig. 4

(a) Optical limiting effects at 520 nm for all PGO samples. The solid lines are the fittings obtained with Eq. (1). The starts represent no optical limiting effect for silica. (b) Figure of merit of all PGO glasses in range of 500-1300. The solid line is just a guide to the eyes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T= 1 π q 0 ( z,0 ) ln[ 1+ q 0 ( z,0 ) e τ 2 ]dτ ,
T(z,Δ ϕ 0 )=1+ 4Δ ϕ 0 x ( x 2 +9)( x 2 +1) ,

Metrics