R. Yadav, K.-S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution oct for corneal imaging,” Biomed. Opt. Express2, 3037–3046 (2011).

[CrossRef]
[PubMed]

K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range fd-oct based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2, 764–770 (2011).

[CrossRef]
[PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform
fast fourier transform for ultrahigh-speed, real-time Fourier-domain
oct,” Opt. Express18, 23472–23487
(2010).

[CrossRef]
[PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel oct,” Proc. SPIE7168, 71681E (2009).

[CrossRef]

S.-W. Lee and B.-M. Kim, “Line-field optical coherence tomography using frequency-sweeping source,” IEEE J. Sel. Top. Quantum Electron.14, 50–55 (2008).

[CrossRef]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain
optical coherence tomography system for retinal imaging in the 1060 nm wavelength
region,” Opt. Lett.33, 2479–2481
(2008).

[PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express16, 8406–8420 (2008).

[CrossRef]
[PubMed]

B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express14, 7661–7669 (2006).

[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for
real-time full-range Fourier domain optical coherence
tomography,” Appl. Opt.45, 1861–1865
(2006).

[CrossRef]
[PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004).

[CrossRef]
[PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66, 239 (2003).

[CrossRef]

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).

[CrossRef]

W. Benjamin and I. Borish, Borish’s Clinical Refraction (Butterworth-Heinemann/Elsevier, 2006).

[PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

W. Benjamin and I. Borish, Borish’s Clinical Refraction (Butterworth-Heinemann/Elsevier, 2006).

[PubMed]

A. Yang, F. Vanholsbeeck, S. Coen, and J. Schroeder, “Chromatic dispersion compensation of an oct system with a programmable spectral filter,” in Optical Coherence Tomography and Coherence Techniques V, R. Leitgeb and B. Bouma, eds., Vol. 8091 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), paper 809125.

B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express14, 7661–7669 (2006).

[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66, 239 (2003).

[CrossRef]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66, 239 (2003).

[CrossRef]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel oct,” Proc. SPIE7168, 71681E (2009).

[CrossRef]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel oct,” Proc. SPIE7168, 71681E (2009).

[CrossRef]

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).

[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66, 239 (2003).

[CrossRef]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel oct,” Proc. SPIE7168, 71681E (2009).

[CrossRef]

S.-W. Lee and B.-M. Kim, “Line-field optical coherence tomography using frequency-sweeping source,” IEEE J. Sel. Top. Quantum Electron.14, 50–55 (2008).

[CrossRef]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66, 239 (2003).

[CrossRef]

S.-W. Lee and B.-M. Kim, “Line-field optical coherence tomography using frequency-sweeping source,” IEEE J. Sel. Top. Quantum Electron.14, 50–55 (2008).

[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express16, 8406–8420 (2008).

[CrossRef]
[PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for
real-time full-range Fourier domain optical coherence
tomography,” Appl. Opt.45, 1861–1865
(2006).

[CrossRef]
[PubMed]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel oct,” Proc. SPIE7168, 71681E (2009).

[CrossRef]

A. Yang, F. Vanholsbeeck, S. Coen, and J. Schroeder, “Chromatic dispersion compensation of an oct system with a programmable spectral filter,” in Optical Coherence Tomography and Coherence Techniques V, R. Leitgeb and B. Bouma, eds., Vol. 8091 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), paper 809125.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

A. Yang, F. Vanholsbeeck, S. Coen, and J. Schroeder, “Chromatic dispersion compensation of an oct system with a programmable spectral filter,” in Optical Coherence Tomography and Coherence Techniques V, R. Leitgeb and B. Bouma, eds., Vol. 8091 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), paper 809125.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

A. Yang, F. Vanholsbeeck, S. Coen, and J. Schroeder, “Chromatic dispersion compensation of an oct system with a programmable spectral filter,” in Optical Coherence Tomography and Coherence Techniques V, R. Leitgeb and B. Bouma, eds., Vol. 8091 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), paper 809125.

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express16, 8406–8420 (2008).

[CrossRef]
[PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for
real-time full-range Fourier domain optical coherence
tomography,” Appl. Opt.45, 1861–1865
(2006).

[CrossRef]
[PubMed]

K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range fd-oct based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2, 764–770 (2011).

[CrossRef]
[PubMed]

R. Yadav, K.-S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution oct for corneal imaging,” Biomed. Opt. Express2, 3037–3046 (2011).

[CrossRef]
[PubMed]

S.-W. Lee and B.-M. Kim, “Line-field optical coherence tomography using frequency-sweeping source,” IEEE J. Sel. Top. Quantum Electron.14, 50–55 (2008).

[CrossRef]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field oct of the
human retina with 1.5 million a-lines/s,” Opt.
Lett.35, 3432–3434
(2010).

[CrossRef]
[PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).

[CrossRef]
[PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004).

[CrossRef]
[PubMed]

T. Hillman and D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express13, 1860–1874 (2005).

[CrossRef]
[PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform
fast fourier transform for ultrahigh-speed, real-time Fourier-domain
oct,” Opt. Express18, 23472–23487
(2010).

[CrossRef]
[PubMed]

B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express14, 7661–7669 (2006).

[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express16, 8406–8420 (2008).

[CrossRef]
[PubMed]

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).

[CrossRef]

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel oct,” Proc. SPIE7168, 71681E (2009).

[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66, 239 (2003).

[CrossRef]

W. Benjamin and I. Borish, Borish’s Clinical Refraction (Butterworth-Heinemann/Elsevier, 2006).

[PubMed]

A. Yang, F. Vanholsbeeck, S. Coen, and J. Schroeder, “Chromatic dispersion compensation of an oct system with a programmable spectral filter,” in Optical Coherence Tomography and Coherence Techniques V, R. Leitgeb and B. Bouma, eds., Vol. 8091 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), paper 809125.