Abstract

Hybrid Photonic Crystal Fibers with a first ring of high index inclusions are studied and compared to both standard air-hole fibers and all solid photonic bandgap fibers. In such new fibers a bandgap-like core mode exists over a wide spectral range and exhibits confinement losses ten orders of magnitude smaller than those of the corresponding all-solid fiber. This particular fiber supports also a core mode guided by modified total internal reflection at long enough wavelengths. The origin and properties of these two kinds of modes are discussed in details. Such a design can also act as a mode filter (as compared to the standard air-hole structure) and could also be used to ease phase matching conditions for nonlinear optics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature (London) 424, 857–851 (2003).
    [CrossRef]
  2. A. Bjarklev, J. Broeng, and A. Sanchez Bjarklev, Photonic crystal fibres (Kluwer Academic Publishers, 2003).
    [CrossRef]
  3. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. St. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  5. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989–991 (1997).
    [CrossRef]
  6. J. M. Dudley and J. R. Taylork, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
    [CrossRef]
  7. G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
    [CrossRef]
  8. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. Russel, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
    [CrossRef] [PubMed]
  9. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
    [CrossRef] [PubMed]
  10. B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
    [CrossRef]
  11. A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006).
    [CrossRef] [PubMed]
  12. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388–1390 (2006).
    [CrossRef] [PubMed]
  13. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  14. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngso, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm,” Opt. Express 18, 16345–16352 (2010).
    [CrossRef] [PubMed]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [CrossRef]
  16. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14, 5682–5687 (2006).
    [CrossRef] [PubMed]
  17. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [CrossRef] [PubMed]
  18. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926–931 (2006).
    [CrossRef]
  19. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15, 15637–15647 (2006).
    [CrossRef]
  20. A. Cerqueira, C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. Hernandez-Figueroa, and C. H. Brito Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett. 33, 2080–2082 (2008).
    [CrossRef]
  21. A. Cerqueira, D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, and H. L. Fragnito, “Broadband single-polarization guidance in hybrid photonic crystal fibers,” Opt. Lett. 36, 133–135 (2011).
    [CrossRef]
  22. J. Sun and C. C. Chan, “Hybrid guiding in liquid-crystal photonic crystal fibers,” J. Opt. Soc. Am. B 24, 2640–2646 (2007).
    [CrossRef]
  23. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783–13795 (2007).
    [CrossRef] [PubMed]
  24. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007).
    [CrossRef] [PubMed]
  25. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of super-continuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
    [CrossRef] [PubMed]
  26. J. Lægsgaard and A. Bjarklev, “Doped photonic bandgap fibers for short-wavelength nonlinear devices,” Opt. Lett. 28, 783–785 (2003).
    [CrossRef] [PubMed]
  27. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
    [CrossRef] [PubMed]
  28. O. Vanvincq, A. Kudlinski, A. Betourne, Y. Quiquempois, and G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 2328–2335 (2010).
    [CrossRef]
  29. Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
    [CrossRef]
  30. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptative curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
    [CrossRef]
  31. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006).
    [CrossRef] [PubMed]
  32. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A: Pure Appl. Opt. 6, 798–804 (2004).
    [CrossRef]
  33. K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett. 65, 329–332 (1990).
    [CrossRef] [PubMed]
  34. H. S. Huang and H. C. Chang, “Guided vector modes of equilateral three-core fibres,” Electron. Lett. 25, 55–56 (1988).
    [CrossRef]
  35. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16, 21119–21131 (2008).
    [CrossRef] [PubMed]
  36. C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
    [CrossRef]
  37. H. C. Park, I. K. Hwang, D. I. Yeom, and B. Y. Kim, “Analyses of cladding modes in photonic crystal fiber,” Opt. Express 15, 15154–15160 (2007).
    [CrossRef] [PubMed]
  38. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16, 9645–9653 (2008).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (1)

2008 (7)

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16, 9645–9653 (2008).
[CrossRef] [PubMed]

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
[CrossRef] [PubMed]

A. Cerqueira, C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. Hernandez-Figueroa, and C. H. Brito Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett. 33, 2080–2082 (2008).
[CrossRef]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16, 21119–21131 (2008).
[CrossRef] [PubMed]

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
[CrossRef]

2007 (5)

2006 (8)

2005 (2)

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptative curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. Russel, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A: Pure Appl. Opt. 6, 798–804 (2004).
[CrossRef]

2003 (3)

J. C. Knight, “Photonic crystal fibres,” Nature (London) 424, 857–851 (2003).
[CrossRef]

G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
[CrossRef]

J. Lægsgaard and A. Bjarklev, “Doped photonic bandgap fibers for short-wavelength nonlinear devices,” Opt. Lett. 28, 783–785 (2003).
[CrossRef] [PubMed]

2002 (1)

1997 (2)

1990 (1)

K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett. 65, 329–332 (1990).
[CrossRef] [PubMed]

1988 (1)

H. S. Huang and H. C. Chang, “Guided vector modes of equilateral three-core fibres,” Electron. Lett. 25, 55–56 (1988).
[CrossRef]

Abeeluck, A. K.

Albert, J.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Betourne, A.

Bétourné, A.

Biancalana, F.

Bigot, L.

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Bouwmans, G.

O. Vanvincq, A. Kudlinski, A. Betourne, Y. Quiquempois, and G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 2328–2335 (2010).
[CrossRef]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of super-continuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16, 9645–9653 (2008).
[CrossRef] [PubMed]

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
[CrossRef] [PubMed]

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783–13795 (2007).
[CrossRef] [PubMed]

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
[CrossRef] [PubMed]

G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
[CrossRef]

Boyer, P.

Brito Cruz, C. H.

Broeng, J.

Cerqueira, A.

Chai, L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Chan, C. C.

Chang, H. C.

H. S. Huang and H. C. Chang, “Guided vector modes of equilateral three-core fibres,” Electron. Lett. 25, 55–56 (1988).
[CrossRef]

Chen, C.

Chen, M.

Chen, W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Cordeiro, C. M. B.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

de Oliveira, I.

Demokan, M. S.

Dong, X.

Douay, M.

Dudley, J. M.

J. M. Dudley and J. R. Taylork, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
[CrossRef]

Eggleton, B. J.

Fan, D.

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Fang, X. H.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Fragnito, H. L.

George, A. K.

Guenneau, S.

Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
[CrossRef]

Hansen, K. P.

Headley, C.

Hedley, T. D.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptative curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. Russel, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

Hernandez-Figueroa, H. E.

Hu, M. L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Huang, H. S.

H. S. Huang and H. C. Chang, “Guided vector modes of equilateral three-core fibres,” Electron. Lett. 25, 55–56 (1988).
[CrossRef]

Hwang, I. K.

Isomaki, A.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Jin, L.

Jin, W.

Kai, G.

Kim, B. Y.

Knight, J. C.

Kudlinski, A.

Kuhlmey, B.

Laegsgaard, J.

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A: Pure Appl. Opt. 6, 798–804 (2004).
[CrossRef]

Lægsgaard, J.

Laronche, A.

Li, J. Y.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Li, Y. F.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Litchinitser, N. M.

Liu, B. W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Liu, Y.

Lona, D. G.

Lopez, F.

Luan, F.

Lyngso, J. K.

McPhedran, R.

Mussot, A.

Nicolet, A.

Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
[CrossRef]

Okhotnikov, O. G.

Olausson, C. B.

Otsuka, K.

K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett. 65, 329–332 (1990).
[CrossRef] [PubMed]

Ould-Agha, Y.

Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
[CrossRef]

Park, H. C.

Pearce, G. J.

Peng, R.

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Percival, R. M.

G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
[CrossRef]

Perrin, M.

Provino, L.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Quiquempois, Y.

O. Vanvincq, A. Kudlinski, A. Betourne, Y. Quiquempois, and G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 2328–2335 (2010).
[CrossRef]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of super-continuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef] [PubMed]

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16, 9645–9653 (2008).
[CrossRef] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
[CrossRef] [PubMed]

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783–13795 (2007).
[CrossRef] [PubMed]

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
[CrossRef] [PubMed]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Renversez, G.

Roberts, P. J.

Russel, P. St.

Russel, P. St. J.

G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
[CrossRef]

Russell, P.

Russell, P. St.

Sagrini, A.

Sanchez Bjarklev, A.

A. Bjarklev, J. Broeng, and A. Sanchez Bjarklev, Photonic crystal fibres (Kluwer Academic Publishers, 2003).
[CrossRef]

Shen, L.

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Shirakawa, A.

Sun, J.

Tang, Z.

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Taylork, J. R.

J. M. Dudley and J. R. Taylork, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
[CrossRef]

Ueda, K.

Vanvincq, O.

Wadsworth, W. J.

G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
[CrossRef]

Wang, A.

Wang, C. Y.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Wang, Z.

Xiao, L.

Ye, Y.

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Yeom, D. I.

Zhao, C.

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Zolla, F.

Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett. 83, 817–818 (2003).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Electron. Lett. (1)

H. S. Huang and H. C. Chang, “Guided vector modes of equilateral three-core fibres,” Electron. Lett. 25, 55–56 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Int. J. Computation Math. Elec. Electron. Engineer. (1)

Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer. 27, 95–109 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A: Pure Appl. Opt. 6, 798–804 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (London) (1)

J. C. Knight, “Photonic crystal fibres,” Nature (London) 424, 857–851 (2003).
[CrossRef]

Opt. Commun. (1)

C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun. 266, 175–180 (2006).
[CrossRef]

Opt. Express (12)

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
[CrossRef] [PubMed]

A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926–931 (2006).
[CrossRef]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16, 21119–21131 (2008).
[CrossRef] [PubMed]

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngso, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm,” Opt. Express 18, 16345–16352 (2010).
[CrossRef] [PubMed]

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783–13795 (2007).
[CrossRef] [PubMed]

H. C. Park, I. K. Hwang, D. I. Yeom, and B. Y. Kim, “Analyses of cladding modes in photonic crystal fiber,” Opt. Express 15, 15154–15160 (2007).
[CrossRef] [PubMed]

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15, 15637–15647 (2006).
[CrossRef]

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16, 9645–9653 (2008).
[CrossRef] [PubMed]

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14, 5682–5687 (2006).
[CrossRef] [PubMed]

A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006).
[CrossRef] [PubMed]

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006).
[CrossRef] [PubMed]

Opt. Lett. (10)

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007).
[CrossRef] [PubMed]

A. Cerqueira, C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. Hernandez-Figueroa, and C. H. Brito Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett. 33, 2080–2082 (2008).
[CrossRef]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of super-continuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef] [PubMed]

A. Cerqueira, D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, and H. L. Fragnito, “Broadband single-polarization guidance in hybrid photonic crystal fibers,” Opt. Lett. 36, 133–135 (2011).
[CrossRef]

A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388–1390 (2006).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[CrossRef]

J. Lægsgaard and A. Bjarklev, “Doped photonic bandgap fibers for short-wavelength nonlinear devices,” Opt. Lett. 28, 783–785 (2003).
[CrossRef] [PubMed]

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989–991 (1997).
[CrossRef]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. Russel, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptative curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett. 65, 329–332 (1990).
[CrossRef] [PubMed]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef] [PubMed]

Other (2)

A. Bjarklev, J. Broeng, and A. Sanchez Bjarklev, Photonic crystal fibres (Kluwer Academic Publishers, 2003).
[CrossRef]

J. M. Dudley and J. R. Taylork, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross sections of the radially hybrid fiber (RH) and the corresponding standard all-solid PBGF (ASPBG) and the air silica 7 defects core (7D). Darker blue corresponds to higher refractive index.

Fig. 2
Fig. 2

Bottom: Density Of States (DOS) for the all-solid PBGF. Lighter regions correspond to higher DOS. Blue curve: effective index of the fundamental core mode in the first BG, red curve: dispersion curve of the highest effective index Block mode. TOP: confinement losses of the fundamental core mode in dB/km.

Fig. 3
Fig. 3

Bottom: In black, effective indices of the BG-like mode (solid line) and MTIR-like mode (dashed line) of the fiber RH. Green lines correspond to the effective indices of the 12 cladding modes that can be associated to LP01 supermodes of the 6 high index rods. Red curves represent the effective index of the fundamental space filling mode calculated for an infinite structure with the periodicity of the Fiber ASPBG cladding (top curve) and with the periodicity of the Fiber 7D cladding (bottom curve). The dispersion curve of the Fiber ASPBG fundamental mode is plotted in blue in the first bandgap (red hatched area), the inset being a zoom to facilitate the comparison between this mode and the BG-like mode of the fiber RH. Top: Corresponding core modes confinement losses.

Fig. 4
Fig. 4

Bottom: Intensity patterns of the Fiber RH BG-like core mode at λ/Λ = 0.25 (A2), 0.4 (B2), 0.6 (C2), 1.25 (D2) and 1.5 (E2). Only a quarter of the cross-section is shown. Top: Corresponding intensity pattern of the Fiber ASPBG fundamental core mode.

Fig. 5
Fig. 5

Intensity patterns of the Fiber RH MTIR-like core mode below its cut-off at λ/Λ = 0.25 (A1) and 0.4 (B1) and above its cut-off at λ/Λ = 0.6 (C1), 1.25 (D1) and 1.5 (E1) (only a quarter of the cross-section is shown).

Fig. 6
Fig. 6

Chromatic group velocity dispersions and effective areas for the two guided modes of the RH fiber. Dashed lines: MTIR mode, continuous line: BG core mode. The vertical red line indicates the cut-off wavelength of the MTIR-like mode.

Fig. 7
Fig. 7

Electric field (norm) at λ/Λ = 0.25 of the 12 cladding modes identified by the group number, same number meaning the same effective index (degenerate modes).

Fig. 8
Fig. 8

Electric field (norm) at λ/Λ = 1 of the 12 cladding modes identified by the group number, same number meaning the same effective index (degenerate modes).

Fig. 9
Fig. 9

Effective index of the BG core modes for 3 values of dair/Λ (in black). Corresponding effective index of the fundamental space filling mode of the air-hole cladding (in red).

Fig. 10
Fig. 10

Group Velocity Dispersion of the BG core modes for three values of dair/Λ (bottom). Corresponding effective area (top).

Fig. 11
Fig. 11

Comparison of effective indices for the core and cladding modes of the seven defects air-hole photonic crystal fiber with those of the Fiber RH (top). Corresponding confinement losses are plotted above. Only cladding modes II2 and III2 of the RH fiber are plotted for clarity.

Metrics