Abstract

A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. J. Yao, “Microwave photonics: arbitrary waveform generation,” Nat. Photonics 4(2), 79–80 (2010).
    [CrossRef]
  3. J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
    [CrossRef]
  4. C.-B. Huang and A. M. Weiner, “Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics,” Opt. Express 18(9), 9366–9377 (2010).
    [CrossRef] [PubMed]
  5. V. Torres-Company, J. Lancis, and P. Andrés, “Incoherent frequency-to-time mapping: application to incoherent pulse shaping,” J. Opt. Soc. Am. A 24(3), 888–894 (2007).
    [CrossRef] [PubMed]
  6. V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “20 GHz arbitrary radio-frequency waveform generator based on incoherent pulse shaping,” Opt. Express 16(26), 21564–21569 (2008).
    [CrossRef] [PubMed]
  7. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Photonic arbitrary waveform generation applicable to multiband UWB communications,” Opt. Express 18(25), 26259–26267 (2010).
    [CrossRef] [PubMed]
  8. J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, Singapore, 1995).
  9. M. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, United States of America, 2008).
  10. M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
    [CrossRef] [PubMed]
  11. C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
    [CrossRef]
  12. H. Chi and J. Yao, “All-fiber chirped microwave pulses generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
    [CrossRef]
  13. C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
    [CrossRef]
  14. Y. Park and J. Azaña, “Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing,” Opt. Express 18(14), 14752–14761 (2010).
    [CrossRef] [PubMed]
  15. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Reconfigurability and tunability of a chirped microwave photonic pulse generator,” Proceedings on Microwave Photonic 2010, (Montreal 2010), pp. 167–170.
  16. J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
    [CrossRef]
  17. C. Dorrer, “Statistical analysis of incoherent pulse shaping,” Opt. Express 17(5), 3341–3352 (2009).
    [CrossRef] [PubMed]
  18. A. M. Vengsarkar and I. M. Besieris, “Regenerative periodic pulse trains in linear, single-mode optical fibers: effect of finite source linewidths,” IEEE Photon. Technol. Lett. 3(1), 33–35 (1991).
    [CrossRef]
  19. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
    [CrossRef] [PubMed]
  20. Y. Park, A. Malacarne, and J. Azaña, “Real-time ultrawide-band group delay profile monitoring through low-noise incoherent temporal interferometry,” Opt. Express 19(5), 3937–3944 (2011).
    [CrossRef] [PubMed]
  21. C. Pulikkaseril, “Filter Bandwidth Definition of the WaveShaper S-series Programmable Processor,” Finisar product whitepaper.
  22. C. B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
    [CrossRef] [PubMed]
  23. C. M. Long, D. E. Leaird, and A. M. Weiner, “Photonically enabled agile rf waveform generation by optical comb shifting,” Opt. Lett. 35(23), 3892–3894 (2010).
    [CrossRef] [PubMed]

2012 (1)

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

2011 (2)

2010 (6)

2009 (2)

2008 (2)

V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “20 GHz arbitrary radio-frequency waveform generator based on incoherent pulse shaping,” Opt. Express 16(26), 21564–21569 (2008).
[CrossRef] [PubMed]

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

2007 (4)

H. Chi and J. Yao, “All-fiber chirped microwave pulses generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

V. Torres-Company, J. Lancis, and P. Andrés, “Incoherent frequency-to-time mapping: application to incoherent pulse shaping,” J. Opt. Soc. Am. A 24(3), 888–894 (2007).
[CrossRef] [PubMed]

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

2000 (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

1991 (1)

A. M. Vengsarkar and I. M. Besieris, “Regenerative periodic pulse trains in linear, single-mode optical fibers: effect of finite source linewidths,” IEEE Photon. Technol. Lett. 3(1), 33–35 (1991).
[CrossRef]

Andrés, P.

Azaña, J.

Bertero, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

Besieris, I. M.

A. M. Vengsarkar and I. M. Besieris, “Regenerative periodic pulse trains in linear, single-mode optical fibers: effect of finite source linewidths,” IEEE Photon. Technol. Lett. 3(1), 33–35 (1991).
[CrossRef]

Boccacci, P.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

Bolea, M.

Boppart, S. A.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
[CrossRef] [PubMed]

Bowers, J. E.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

Capmany, J.

Chen, L. R.

Chen, N. W.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

Chi, H.

H. Chi and J. Yao, “All-fiber chirped microwave pulses generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

Conte, F.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

Dorrer, C.

Furutani, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

Huang, C. B.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

Huang, C.-B.

Jung, W.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
[CrossRef] [PubMed]

Kuo, F. M.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

Lancis, J.

Leaird, D. E.

Long, C. M.

Malacarne, A.

Miyakawa, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

Mora, J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Orikasa, K.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

Ortega, B.

Park, Y.

Set, S. Y.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

Sharma, U.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
[CrossRef] [PubMed]

Shi, J. W.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

Shin, S.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
[CrossRef] [PubMed]

Torres-Company, V.

Tu, H.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
[CrossRef] [PubMed]

Vengsarkar, A. M.

A. M. Vengsarkar and I. M. Besieris, “Regenerative periodic pulse trains in linear, single-mode optical fibers: effect of finite source linewidths,” IEEE Photon. Technol. Lett. 3(1), 33–35 (1991).
[CrossRef]

Wang, C.

C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[CrossRef]

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

Weiner, A. M.

Yao, J.

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[CrossRef]

J. Yao, “Microwave photonics: arbitrary waveform generation,” Nat. Photonics 4(2), 79–80 (2010).
[CrossRef]

C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[CrossRef]

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

H. Chi and J. Yao, “All-fiber chirped microwave pulses generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

IEEE Photon. J. (1)

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J. 4(1), 215–223 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. M. Vengsarkar and I. M. Besieris, “Regenerative periodic pulse trains in linear, single-mode optical fibers: effect of finite source linewidths,” IEEE Photon. Technol. Lett. 3(1), 33–35 (1991).
[CrossRef]

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[CrossRef] [PubMed]

IEEE Trans. Microw. Theory Tech. (2)

C. Wang and J. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[CrossRef]

H. Chi and J. Yao, “All-fiber chirped microwave pulses generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Yao, “Microwave photonics: arbitrary waveform generation,” Nat. Photonics 4(2), 79–80 (2010).
[CrossRef]

Opt. Commun. (1)

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Other (4)

C. Pulikkaseril, “Filter Bandwidth Definition of the WaveShaper S-series Programmable Processor,” Finisar product whitepaper.

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Reconfigurability and tunability of a chirped microwave photonic pulse generator,” Proceedings on Microwave Photonic 2010, (Montreal 2010), pp. 167–170.

J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, Singapore, 1995).

M. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, United States of America, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the nonlinear incoherent optical processing technique operating as a microwave pulse generation system. PD: photodetector. Insets: (a) power spectral distribution of the optical source, (b) transfer function of modulator response at angular optical frequency ω', (c) optical delay of high-order dispersive element and (d) power spectral density of modulated signal at ω’ after propagation.

Fig. 2
Fig. 2

(a) Gaussian profile P(ω) and (b) slicing T(ω) of a periodicity 1/(2π) THz introduced to obtain (c) the optical source power distribution S(ω). Microwave pulse generated (grey line) and its instantaneous frequency () for second-order dispersion (d) φ3 = 2 ps3 and (e) φ3 = −2 ps3. Theoretical prediction of instantaneous frequency included in dashed line.

Fig. 3
Fig. 3

Generated waveform (grey line) and instantaneous frequency () for (a) 5 GHz and (b) 10 GHz central frequencies where the optical source power distribution corresponds to a uniform (Inset a) and compensated uniform (Inset b) profiles, respectively. Instantaneous frequency theoretical prediction (dashed line).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ(ω)= φ o + φ 1 ω+ 1 2! φ 2 ω 2 + 1 3! φ 3 ω 3
e out (ω',t)= e jω't h mod (t) h disp ( t )
I out (t)= I o 2π + S(ω) | e out (ω,t) | 2 dω
| e out (ω,t) | 2 | h mod ( ω o ,t) | 2 δ( tτ(ω) ) where τ(ω)= φ 1 + φ 2 ω+ 1 2 φ 3 ω 2
I OUT (t)= I o 2π S( ω ) | φ 2 + φ 3 ω | | ω= ω m | h mod ( ω o ,t) | 2 with ω m ( t )=| φ 2 φ 3 |( 1 1+2 φ 3 t φ 2 2 )
| φ 2 + 1 2 φ 3 σ c | σ 0 σ c σ 0 σ c
T(ω)= 1 2 [ 1+cos( 2π ω Δω ) ]
I OUT (t)= I o 4π P( ω ) | φ 2 + φ 3 ω | r(t) | ω= ω m [ 1+cos( 2π ω Δω Ψ(t) ) ] | ω= ω m
f rf (t)= 1 2π dψ( t ) dt = f o 1+2 φ 3 φ 2 2 t where f o = 1 | φ 2 |Δω

Metrics